User:Lord Matt/madness
From Wikipedia, the free encyclopedia
Some Fun with assumed distributions - ignore me

let B = Number of Indexed Backlinks


My PR Factor Function M ![M(x,B) = \frac {\sqrt[4] {B}} {x}](../../../../math/9/5/5/955e922fa815410ca4be5370d2b7c447.png)
Exact PR Point function g 
Logarythmic distence to next g(x+1)
D(x) = g(x + 1) − g(x)
long hand 
Estimated Percentage of the distence to the next level

Full Math
![\frac{\sqrt {\frac{f(Pagerank+1)} {Pagerank+1}} - \sqrt {\frac{f(Pagerank)} {Pagerank}}} {\frac {\sqrt[4] {Backlinks}} {Pagerank}} * 100](../../../../math/1/e/9/1e98e86a34643e44f50077771ad3ea12.png)
\sum_{0}^ {PR} 2^n
![\frac{\sqrt {\frac{\sum_{n=0}^ {PR} 2^n} {Pagerank+1}} - \sqrt {\frac{\sum_{n=0}^ {PR-1} 2^n} {Pagerank}}} {\frac {\sqrt[4] {Backlinks}} {Pagerank}} * 100](../../../../math/c/d/b/cdb51d28c64207e55ed840d73c38a709.png)

![\sqrt \frac{f(PR)} {PR} - \frac {\sqrt[4] {Backlinks}} {PR}](../../../../math/6/5/4/654f901627f195d7e959ab1174f3398c.png)
(1 - (4th root of B) / PR)
square root(15 + 16) / 5 = 1.11355287 (4th root of 237) / 4 = 0.980905332 square root(15) / 4 = 0.968245837 (4th root of 237) / 5 = 0.784724265
\left = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots

