Lommel polynomial
From Wikipedia, the free encyclopedia
A Lommel polynomial Rm,ν(z), named for Eugen von Lommel, is a polynomial in 1/z giving the recurrence relation
where Jν(z) is a Bessel function of the first kind.
They are given explicitly by
[edit] See also
[edit] References
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz & Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II, McGraw-Hill Book Company, Inc., New York-Toronto-London, MR0058756
- Ivanov, A. B.. (2001), “Lommel polynomial”, in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104

![R_{m,\nu} = \sum_{n=0}^{[m/2]}\frac{(-1)^m(m-n)!\Gamma(\nu+m-n)}{n!(m-2n)!\Gamma(\nu+n)}(z/2)^{2n-m}.](../../../../math/a/d/1/ad124ecda44dc3af36ed0a4e778dc737.png)

