Talk:Logistic distribution/Generalized log-logistic distribution
From Wikipedia, the free encyclopedia
[edit] Generalized log-logistic distribution
The Generalized log-logistic distribution (GLL) has three parameters
and ΞΎ.
| Probability density function |
|
| Cumulative distribution function |
|
| Parameters | location (real) |
|---|---|
| Support | ![]()
|
| Probability density function (pdf) | ![]() where |
| Cumulative distribution function (cdf) | ![]() where |
| Mean | ![]() where |
| Median | ![]() |
| Mode | ![]() |
| Variance | ![]() where |
| Skewness | {{{skewness}}} |
| Excess kurtosis | {{{kurtosis}}} |
| Entropy | |
| Moment-generating function (mgf) | |
| Characteristic function | |
The cumulative distribution function is
for
, where
is the location parameter,
the scale parameter and
the shape parameter. Note that some references give the "shape parameter" as
.
The probability density function is
again, for 








![\mu + \frac{\sigma}{\xi}\left[\left(\frac{1-\xi}{1+\xi}\right)^\xi - 1 \right]](../../../../math/3/5/3/353d370dffa0edaeddfcf17ffc3d20e6.png)
![\frac{\sigma^2}{\xi^2}[2\alpha \csc(2 \alpha) - (\alpha \csc(\alpha))^2]](../../../../math/6/a/5/6a553048c0b44ea9a6114a1397436c62.png)

![\frac{\left(1+\frac{\xi(x-\mu)}{\sigma}\right)^{-(1/\xi +1)}}
{\sigma\left[1 + \left(1+\frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi}\right]^2} .](../../../../math/e/8/d/e8d6b8b72c6d2108e0eae944f9e6b60c.png)

