List of operators
From Wikipedia, the free encyclopedia
In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.
In the following L is an operator
which takes a function
to another function
. Here,
and
are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.
| Expression | Curve definition |
Variables | Description |
|---|---|---|---|
| Linear transformations | |||
![]() |
Derivative of n-th order | ||
![]() |
Cartesian | y = y(x) x = t |
Integral, area |
![]() |
Composition operator | ||
![]() |
Even component | ||
![]() |
Odd component | ||
![]() |
Sturm-Liouville operator | ||
![]() |
Laplace transform | ||
![]() |
Fourier transform | ||
![]() |
Mellin transform | ||
![]() |
Abel transform | ||
![]() |
Inverse Abel transform | ||
![]() |
Hartley transform | ||
| Non-linear transformations | |||
![]() |
Inverse function | ||
![]() |
Legendre transformation | ||
![]() |
Left composition | ||
![]() |
Logarithmic derivative | ||
![]() |
Total variation | ||
![]() |
Mean value | ||
![]() |
Geometric mean value | ||
![]() |
Cartesian | y = y(x) x = t |
Subtangent |
![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
|
![]() |
Polar | y = r(φ) φ = t |
|
![]() |
Polar | y = r(φ) φ = t |
Area |
![]() |
Cartesian | y = y(x) x = t |
Arc length |
![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
|
![]() |
Polar | y = r(φ) φ = t |
|
![]() |
Cartesian | y = y(x) x = t |
Curvature |
![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
|
![]() |
Polar | y = r(φ) φ = t |
|
![]() |
Parametric Cartesian |
x = x(t) y = y(t) z = z(t) |
|
![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Affine curvature |
![]() |
Parametric Cartesian |
x = x(t) y = y(t) z = z(t) |
Torsion of curves |
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Dual curve (tangent coordinates) |
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Parallel curve |
![]() ![]() |
Cartesian | y = y(x) x = t |
Evolute |
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
|
![]() |
Intrinsic | y = r(s) s = t |
|
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Involute |
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Pedal curve with pedal point (0;0) |
![]() ![]() |
Parametric Cartesian |
x = x(t) y = y(t) |
Negative pedal curve with pedal point (0;0) |
![]() ![]() |
Intrinsic | y = r(s) s = t |
Intrinsic to Cartesian transformation |
| Metric functionals | |||
![]() |
Norm | ||
![]() |
Inner product | ||
![]() |
Fubini-Study metric (inner angle) |
||
| Distribution functionals | |||
![]() |
Convolution | ||
![]() |
Differential entropy | ||
![]() |
Expected value | ||
![]() |
Variance | ||

![L[y]=y^{(n)} \](../../../../math/4/9/a/49a0365dd20f66fcf0794f6fb55c3972.png)
![L[y]=\int_a^t y \,dt](../../../../math/9/7/d/97d376fb55fecbeffbfca3446df29553.png)
![L[y]=y\circ f](../../../../math/b/b/b/bbb519bb3a09bf3d583e1780724dee9b.png)
![L[y]=\frac{y\circ t+y\circ -t}{2}](../../../../math/5/5/2/552dcd34a9489a9e3fa08329250e52c8.png)
![L[y]=\frac{y\circ t-y\circ -t}{2}](../../../../math/f/4/8/f4830acc2d8f21a36c6b1a8b8f502039.png)
![L[y] =-(py')'+qy \,](../../../../math/d/8/e/d8eb95bb0644e5fbd410af126da452f8.png)
![L[y]=\int_0^\infty y(s)\exp{(-ts)}\,ds](../../../../math/0/0/4/004390c7cb49319aff55dac6c9ac1369.png)
![L[y]= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty y(s) \exp{(- its)}\,ds](../../../../math/8/6/3/86348f08843033c58367bd5b9809a663.png)
![L[y] =\int_0^{\infty} \frac{s^t y(s)}{s}\,ds.](../../../../math/f/c/4/fc4ff39cc74c6951df44b7c915d7da44.png)
![L[y]=2\int_t^\infty \frac{y(s)s\,ds}{\sqrt{s^2-t^2}}.](../../../../math/c/1/6/c16ae6d46f1056660e6dd859c218d8ec.png)
![L[y]=-\frac{1}{\pi}\int_t^\infty \frac{y'(s)\,ds}{\sqrt{s^2-t^2}}.](../../../../math/e/0/4/e04da140e712ed51732e3f3bcef8b722.png)
![L[y]= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty y(s) \cos ts \sin ts \,ds](../../../../math/8/c/0/8c09e28ca77df62a0186cd17432482d9.png)
![F[y]=y^{-1}=\mbox{inv } y \](../../../../math/2/1/7/2178e1ec662181b83dcd6ccb7243b25a.png)
![F[y]=t\,\mbox{inv }y' - y\circ \mbox{inv }y'](../../../../math/d/e/9/de908582bdf563a7eb54ac81afd932e9.png)
![F[y]=f\circ y](../../../../math/0/c/b/0cb0f7a63ff9aca39bdaeb1c4a31813b.png)
![F[y]=\frac{y'}{y}](../../../../math/a/4/c/a4c904350b714a063b4095662b3a3767.png)
![F[y]=\int_a^t |y'| \,dt](../../../../math/0/1/f/01f779edce31f5f0438763b3575d319c.png)
![F[y]=\frac{1}{t-a}\int_a^t y\,dt](../../../../math/7/a/6/7a6653583ea941e99e751998426851a0.png)
![F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right)](../../../../math/4/d/f/4df1cc08b4304136736fadd9088a192a.png)
![F[y]= -\frac{y}{y'}](../../../../math/7/7/1/771799ab1e4c1fa679c92f4354f09e1e.png)
![F[x,y]= -\frac{yx'}{y'}](../../../../math/2/7/9/279255dd9a83486684b89e1c3b950863.png)
![F[y]= -\frac{y^2}{y'}](../../../../math/e/6/3/e6309fdefcc091d5cc3c4cb7bd3ad5aa.png)
![F[y]=\frac{1}{2}\int_a^t y^2 dt](../../../../math/1/a/2/1a201de6cb59d21d165790529ec4f2d5.png)
![F[y]= \int_a^t \sqrt { 1 + y'^2 }\, dt](../../../../math/f/2/7/f277fbddcd304a3b2434074a266cf121.png)
![F[x,y]= \int_a^t \sqrt { x'^2 + y'^2 }\, dt](../../../../math/7/e/0/7e07407d0bb1b73f319579092acd9b10.png)
![F[y]= \int_a^t \sqrt { y^2 + y'^2 }\, dt](../../../../math/2/5/3/253d46ec36cdf28f0c28bc209b405c6a.png)
![F[y]=\frac{y''}{(1+y'^2)^{3/2}}](../../../../math/e/0/e/e0ea1ae833565d4b1b41c41382e4b53d.png)
![F[x,y]= \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}}](../../../../math/4/f/7/4f78f09209d07999a9e9f96767e8c3c9.png)
![F[y]=\frac{y^2+2y'^2-yy''}{(y^2+y'^2)^{3/2}}](../../../../math/4/8/9/48901a17750b479c98aedcd6428953fa.png)
![F[x,y,z]=\frac{\sqrt{(z''y'-z'y'')^2+(x''z'-z''x')^2+(y''x'-x''y')^2}}{(x'^2+y'^2+z'^2)^{3/2}}](../../../../math/6/2/d/62df5459c08703d3c8f6c258e0fc197b.png)
![F[x,y]=\left| \frac{x''y'''-x'''y''}{(x'y''-x''y')^{5/2}}-\frac{1}{2}\left[\frac{1}{(x'y''-x''y')}\right]''\right|](../../../../math/8/a/c/8ac97dfd429f0d1df17437ff16e6102a.png)
![F[x,y,z]=\frac{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^2+y'^2+z'^2)(x''^2+y''^2+z''^2)}](../../../../math/c/5/2/c52fa64348864d2ee2565431b3f139a9.png)
![X[x,y]=\frac{y'}{yx'-xy'}](../../../../math/e/1/9/e194332d41ee7f040451d40342960eea.png)
![Y[x,y]=\frac{x'}{xy'-yx'}](../../../../math/4/5/1/451f8ceefba3042f3e6119278270d864.png)
![X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}](../../../../math/6/4/7/647b764f6b1bdc007709689a57500cc5.png)
![Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}](../../../../math/c/c/a/cca4c29ec2ebd10ce3636ad0cee4e1be.png)
![X[y]=t-\frac{1+y'^2}{y''}](../../../../math/7/e/3/7e3badb5b58da7485f683d237274598e.png)
![Y[y]=y+\frac{1+y'^2}{y''}](../../../../math/b/a/8/ba8049ab25c1c3d572607a954c41762b.png)
![X[x,y]=x+y'\frac{x'^2+y'^2}{x''y'-y''x'}](../../../../math/c/8/e/c8e238b46813629cab3df47183a5bd50.png)
![Y[x,y]=y+x'\frac{x'^2+y'^2}{y''x'-x''y'}](../../../../math/c/9/4/c94a285074edb6fc5f149c3d16c39551.png)
![F[y]=\frac{yy'}{(\mbox{inv }y)'}](../../../../math/4/4/f/44f41e67105862089c4de225b5e610bf.png)
![X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}](../../../../math/e/d/6/ed6f5c75c1eb26c6aebf6f7324cc4077.png)
![Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}](../../../../math/8/3/a/83a240071edfd87e0b05f3a3bb93eab2.png)
![X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}](../../../../math/d/7/d/d7dcadaecf9caf291dce86f89aad5327.png)
![Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}](../../../../math/a/3/5/a358f788b739ad1ad4f44358213a6c4e.png)
![X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}](../../../../math/a/5/8/a588ce2e39ab0f23e1d64d2fa9212179.png)
![Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}](../../../../math/9/6/e/96ea79b8881ea384ebba265a2ed407db.png)
![X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt](../../../../math/7/3/8/7388111d1347030ae66786d61ee5114f.png)
![Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt](../../../../math/1/2/f/12fa1a381840f1a9e2d482727f4e517d.png)
![F[y]=||y||=\sqrt{\int_E y^2 \, dt}](../../../../math/8/3/2/832163c2e3627ce47cfdafd605269d9e.png)
![F[x,y]=\int_E xy \, dt](../../../../math/5/f/0/5f07dba271068316a463b2d579c631a1.png)
![F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right]](../../../../math/b/5/e/b5e04ab5fa9199e2586d2192d31ef1d9.png)
![F[x,y] = x * y = \int_E x(s) y(t - s)\, ds](../../../../math/0/2/f/02fd75ea1f0e9e10d4cf9b0953ea90b2.png)
![F[y] = \int_E y \ln y \, dy](../../../../math/b/d/e/bded6b0422d94f0ffc8c832f9282cedc.png)
![F[y] = \int_E yt\,dt](../../../../math/f/8/1/f81088dcd35f4a5f4b8a21b5d81eed73.png)
![F[y] = \int_E (t-\int_E yt\,dt)^2y\,dt](../../../../math/7/d/0/7d0076a25484b91fbb18fce89d075edc.png)

