List of integrals of trigonometric functions
From Wikipedia, the free encyclopedia
| Trigonometry |
| Reference |
|
List of identities |
| Euclidean theory |
|
Law of sines |
| Calculus |
|
The Trigonometric integral |
The following is a list of integrals (antiderivative functions) of trigonometric functions. For integrals involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of Integral functions, see table of integrals and list of integrals. See also: trigonometric integral
In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
[edit] Integrals of trigonometric functions containing only sine
[edit] Integrals of trigonometric functions containing only cosine
[edit] Integrals of trigonometric functions containing only tangent
[edit] Integrals of trigonometric functions containing only secant
[edit] Integrals of trigonometric functions containing only cosecant
[edit] Integrals of trigonometric functions containing only cotangent
[edit] Integrals of trigonometric functions containing both sine and cosine
- also:

- also:

- also:

- also:

- also:

[edit] Integrals of trigonometric functions containing both sine and tangent
[edit] Integrals of trigonometric functions containing both cosine and tangent
[edit] Integrals of trigonometric functions containing both sine and cotangent
[edit] Integrals of trigonometric functions containing both cosine and cotangent
[edit] Integrals of trigonometric functions with symmetric limits
|
|||||
- ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008


![\int\sin a_1x\sin a_2x\;dx = \frac{\sin[(a_1-a_2)x]}{2(a_1-a_2)}-\frac{\sin[(a_1+a_2)x]}{2(a_1+a_2)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!](../../../../math/4/f/d/4fdb649aee176d48990fdeb1cedd1510.png)





















































































