User:LavosBacons/LaTeX
From Wikipedia, the free encyclopedia
![\int_1^t \pi f(x)^2dx = (1/6)\pi [(1+3t)^2 - 16]](../../../../math/b/3/c/b3c1405c04f4e3adc50036e30f162f75.png)
![\int_1^t f(x)^2dx = (1/6)[(1+3t)^2 - 16]](../../../../math/6/8/b/68bff52cffab3fe6ddc24f357a67da6d.png)
Let g(x) = f(x)2 and let G(x) = an antiderivative of g(x). Then:
![\int_1^t g(x)dx = (1/6)[(1+3t)^2 - 16]](../../../../math/a/8/7/a87d8fac7ed6a7bf7c078ef270e41cb4.png)
G(t) − G(1) = (1 / 6)[(1 + 3t)2 − 16]
G(t) = (1 / 6)[(1 + 3t)2 − 16] + G(1)
![\frac{d}{dt}G(t) = \frac{d}{dt}( (1/6)[(1+3t)^2 - 16] + G(1))](../../../../math/8/5/9/859514fffa9c957362ca8d4c163a61ea.png)
![\frac{d}{dt}G(t) = (1/6)\frac{d}{dt}[(1+3t)^2]](../../../../math/8/1/d/81d08e7cc872d0741c3ba011664ec6f7.png)
![\frac{d}{dt}G(t) = (1/6)\frac{d}{dt}[1 + 6t + 9t^2]](../../../../math/6/4/3/64315cdb9c2e0c187451798ee6afd917.png)
![\frac{d}{dt}G(t) = (1/6)[6 + 18t]](../../../../math/0/7/f/07fceb165eb591b60f9eaeb1fc37bc8a.png)

g(t) = 1 + 3t
Plugging back in,
g(x) = f(x)2
1 + 3x = f(x)2

marilyn = marilyn − 1 + marilyn − 2





