User:LavosBacons/LaTeX

From Wikipedia, the free encyclopedia

\int_1^t \pi f(x)^2dx = (1/6)\pi [(1+3t)^2 - 16]

\int_1^t f(x)^2dx = (1/6)[(1+3t)^2 - 16]

Let g(x) = f(x)2 and let G(x) = an antiderivative of g(x). Then:

\int_1^t g(x)dx = (1/6)[(1+3t)^2 - 16]

G(t) − G(1) = (1 / 6)[(1 + 3t)2 − 16]

G(t) = (1 / 6)[(1 + 3t)2 − 16] + G(1)

\frac{d}{dt}G(t) = \frac{d}{dt}( (1/6)[(1+3t)^2 - 16] + G(1))

\frac{d}{dt}G(t) = (1/6)\frac{d}{dt}[(1+3t)^2]

\frac{d}{dt}G(t) = (1/6)\frac{d}{dt}[1 + 6t + 9t^2]

\frac{d}{dt}G(t) = (1/6)[6 + 18t]

\frac{d}{dt}G(t) = 1 + 3t

g(t) = 1 + 3t

Plugging back in,

g(x) = f(x)2

1 + 3x = f(x)2

f(x) = \sqrt{1 + 3x}

marilyn = marilyn − 1 + marilyn − 2

\sqrt 2

\Sigma_{i=1}^{\infty}10^{-(i!)}


\neg \exists x\ \exists L\ \exists\ a > 0\ \forall\ \epsilon \in (0,a)\ \exists\ \delta\ |love\ for\ you\ (x + \delta) - L| < \epsilon

\frac{d}{dx}\int f(x) dx = f(x)