User:Lark046/Area

From Wikipedia, the free encyclopedia

March 27, 2007 (originally conceived April 25, 2001):

Proof that a circle’s area is πr2

\begin{align}
r^2 &{}= x^2 + y^2 \\
y^2 &{}= r^2 - x^2 \\
y &{}= \pm \sqrt{r^2 - x^2}
\end{align}

Looking at only the first quadrant, we can constrain y > 0. To get the total area, take the area found in the first quadrant and multiply by 4.

\begin{align}
y &{}= \sqrt{r^2 - x^2} \\
\mathrm A &{}\approx 4 \sum y \bigtriangleup x \\
&{}= 4 \int_0^r y \, dx \\
&{}= 4 \int_0^r \sqrt{r^2 - x^2} \, dx
\end{align}

Let

\begin{align}
x &{}= r \, cos \, \theta \\
dx &{}= -r \, sin \, \theta \, d \theta \\
x^2 &{}= r^2 cos^2 \, \theta \\
r^2 - x^2 &{}= r^2 - r^2 cos^2 \, \theta \\
&{}= r^2(1 - cos^2 \, \theta) \\
&{}= r^2 sin^2 \theta \\
\sqrt{r^2 - x^2} &{}= r \, sin \, \theta
\end{align}

\begin{align}
0 &{}= r \, cos \, \theta, r \neq 0 \\
0 &{}= cos \, \theta \\
\frac{\pi}{2} &{}= \theta \\
r &{}= r \, cos \, \theta, r \neq 0 \\
1 &{}= cos \, \theta \\
0 &{}= \theta \\
\end{align}

Substituting:

\begin{align}
\mathrm A &{}= 4 \int_0^r \sqrt{r^2 - x^2} \, dx \\
&{}= 4 \int_{\pi/2}^0 r \, sin \, \theta (-r \, sin \, \theta \, d \theta) \\
&{}= 4 \int_{\pi/2}^0 -r^2 \, sin^2 \, \theta \, d \theta \\
\end{align}

Move the constants across the integral:

\begin{align}
\mathrm A &{}= 4r^2 \int_0^{\pi/2} sin^2 \, \theta \, d \theta
\end{align}

Let

\begin{align}
u = sin^2 \, \theta
\end{align}

\begin{align}
dv = d \theta
\end{align}

\begin{align}
du &{}= 2 \, sin \, \theta \, cos \, \theta \, d \theta \\
&{}= sin 2 \theta \, d \theta \\
\end{align}

\begin{align}
v = \theta
\end{align}

Substituting:

\begin{align}
\mathrm A &{}= 4r^2 \int_0^{\pi/2} sin^2 \, \theta d \theta \\
&{}= 4r^2 (\theta \, sin^2 \, \theta |_0^{\pi/2} - \int_0^{\pi/2} \theta \, sin \, 2 \theta \, d \theta) \\
&{}= 4r^2 ((\frac{\pi}{2})(1^2) - (0)(0^2) - \int_0^{\pi/2} \theta \, sin \, 2 \theta \, d \theta) \\
&{}= 4r^2 (\frac{\pi}{2} - \int_0^{\pi/2} \theta \, sin \, 2 \theta \, d \theta) \\
\end{align}

Let

\begin{align}
\alpha &{}= 2 \theta \\
d \alpha &{}= 2 \, d \theta \\
\theta &{}= \frac{\alpha}{2} \\
0 &{}= \frac{\alpha}{2}, 0 = \alpha \\
\frac{\pi}{2} &{}= \frac{\alpha}{2}, \pi = \alpha \\
\end{align}

Substituting:

\begin{align}
\mathrm A &{}= 4r^2 (\frac{\pi}{2} - \int_0^{\pi/2} \theta \, sin \, 2 \theta \, d \theta) \\
&{}= 4r^2 (\frac{\pi}{2} - \int_0^{\pi} \frac{\alpha}{2} \, sin \, \alpha \, (\frac{1}{2})d \alpha) \\
\end{align}

Move the constants across the integral:

\begin{align}
\mathrm A &{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} \int_0^{\pi}\alpha \, sin \, \alpha \, d \alpha) \\
\end{align}

Let

\begin{align}
u &{}= \alpha, \, dv = sin \, \alpha \, d \alpha \\
du &{}= d \alpha, v = -cos \, \alpha \\
\end{align}

Substituting:

\begin{align}
\mathrm A &{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} \int_0^{\pi} \alpha \, sin \, \alpha \, d \alpha) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\alpha \, cos \, \alpha |_0^{\pi} - \int_{\pi}^0 -cos \, \alpha \, d \alpha]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [(\pi)(1) - (0)(1) - \int_0^{\pi} cos \, \alpha \, d \alpha]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\pi - sin \, \alpha |_0^{\pi}]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\pi - (0 - 0)]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{\pi}{4}) \\
&{}= 4r^2 (\frac{\pi}{4}) \\
\mathrm A &{}= \pi r^2
\end{align}