User:Lark046/Area
From Wikipedia, the free encyclopedia
March 27, 2007 (originally conceived April 25, 2001):
Proof that a circle’s area is πr2

Looking at only the first quadrant, we can constrain y > 0. To get the total area, take the area found in the first quadrant and multiply by 4.

Let
|
|
|
Substituting:

Move the constants across the integral:

Let
|
|
|
|
|
|
Substituting:

Let

Substituting:

Move the constants across the integral:

Let

Substituting:
![\begin{align}
\mathrm A &{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} \int_0^{\pi} \alpha \, sin \, \alpha \, d \alpha) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\alpha \, cos \, \alpha |_0^{\pi} - \int_{\pi}^0 -cos \, \alpha \, d \alpha]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [(\pi)(1) - (0)(1) - \int_0^{\pi} cos \, \alpha \, d \alpha]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\pi - sin \, \alpha |_0^{\pi}]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{1}{4} [\pi - (0 - 0)]) \\
&{}= 4r^2 (\frac{\pi}{2} - \frac{\pi}{4}) \\
&{}= 4r^2 (\frac{\pi}{4}) \\
\mathrm A &{}= \pi r^2
\end{align}](../../../../math/1/a/e/1ae388ba0a906e88330dd92bf08b01e1.png)







