Kelvin functions
From Wikipedia, the free encyclopedia
The Kelvin functions Berν(x) and Beiν(x) are the real and imaginary parts, respectively, of
- Jν(xe3πi / 4),
where x is real, and Jν(z) is the νth order Bessel function of the first kind. Similarly, the functions Kerν(x) and Keiν(x) are the real and imaginary parts, respectively, of Kν(xe3πi / 4), where Kν(z) is the νth order modified Bessel function of the second kind.
While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with x taken to be real, the functions can be analytically continued for complex arguments x ei φ, φ ∈ [0, 2π). With the exception of Bern(x) and Bein(x) for integral n, the Kelvin functions have a branch point at x = 0.
Contents |
[edit] Ber(x)
For integers n, Bern(x) has the series expansion
where Γ(z) is the Gamma function. The special case Ber0(x), commonly denoted as just Ber(x), has the series expansion
and asymptotic series
,
where
, and
[edit] Bei(x)
For integers n, Bein(x) has the series expansion
where Γ(z) is the Gamma function. The special case Bei0(x), commonly denoted as just Bei(x), has the series expansion
and asymptotic series
,
where α, f1(x), and g1(x) are defined as for Ber(x).
[edit] Ker(x)
For integers n, Kern(x) has the (complicated) series expansion
where ψ(z) is the Digamma function. The special case Ker0(x), commonly denoted as just Ker(x), has the series expansion
and the asymptotic series
where
, and
[edit] Kei(x)
For integers n, Kein(x) has the (complicated) series expansion
where ψ(z) is the Digamma function. The special case Kei0(x), commonly denoted as just Kei(x), has the series expansion
and the asymptotic series
where β, f2(x), and g2(x) are defined as for Ker(x).
[edit] See also
[edit] References
- Abramowitz, Milton & Stegun, Irene A., eds. (1965), “Chapter 9”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, ISBN 0-486-61272-4.
for ![\mathrm{Ber}_n(x) = \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \frac{\cos\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right]}{k! \Gamma(n + k + 1)} \left(\frac{x^2}{4}\right)^k](../../../../math/8/d/a/8da04b6acc18f14e5fba726585e2816b.png)
![\mathrm{Ber}(x) = 1 + \sum_{k \geq 1} \frac{(-1)^k (x/2)^{4k}}{[(2k)!]^2}](../../../../math/7/c/7/7c7799c404ad6e0261d5613a7da033ed.png)


for ![\mathrm{Bei}_n(x) = \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \frac{\sin\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right]}{k! \Gamma(n + k + 1)} \left(\frac{x^2}{4}\right)^k](../../../../math/e/6/e/e6e5256531fbb9f9cab28a3d5bbd0e38.png)
![\mathrm{Bei}(x) = \sum_{k \geq 0} \frac{(-1)^k (x/2)^{4k+2}}{[(2k+1)!]^2}](../../../../math/4/f/8/4f8797b75b1ff5c1ea2d4e2bc28ac43f.png)
![\mathrm{Ker}_n(x) = \frac{1}{2} \left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{n-1} \cos\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right] \frac{(n-k-1)!}{k!} \left(\frac{x^2}{4}\right)^k - \ln\left(\frac{x}{2}\right) \mathrm{Ber}_n(x) + \frac{\pi}{4}\mathrm{Bei}_n(x) + \frac{1}{2} \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \cos\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right] \frac{\psi(k+1) + \psi(n + k + 1)}{k! (n+k)!} \left(\frac{x^2}{4}\right)^k](../../../../math/4/0/2/4029ae9d8410772bb458dae6c0a8ad91.png)
for ![\mathrm{Ker}(x) = -\ln\left(\frac{x}{2}\right) \mathrm{Ber}_n(x) + \frac{\pi}{4}\mathrm{Bei}_n(x) + \sum_{k \geq 0} (-1)^k \frac{\psi(2k + 1)}{[(2k)!]^2} \left(\frac{x^2}{4}\right)^{2k}](../../../../math/a/f/0/af079eb334d5adc7d4261f0c3c54ebaa.png)
![\mathrm{Ker}(x) \sim \sqrt{\frac{\pi}{2x}} e^{-\frac{x}{\sqrt{2}}} [f_2(x) \cos \beta + g_2(x) \sin \beta],](../../../../math/7/2/1/721f5d99a7d6283e0d0559c83ae795bf.png)


![\mathrm{Kei}_n(x) = \frac{1}{2} \left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{n-1} \sin\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right] \frac{(n-k-1)!}{k!} \left(\frac{x^2}{4}\right)^k - \ln\left(\frac{x}{2}\right) \mathrm{Bei}_n(x) - \frac{\pi}{4}\mathrm{Ber}_n(x) + \frac{1}{2} \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \sin\left[\left(\frac{3n}{4} + \frac{k}{2}\right)\pi\right] \frac{\psi(k+1) + \psi(n + k + 1)}{k! (n+k)!} \left(\frac{x^2}{4}\right)^k](../../../../math/1/3/a/13a588bc138d7fbb42642e58397674e7.png)
for ![\mathrm{Kei}(x) = -\ln\left(\frac{x}{2}\right) \mathrm{Bei}_n(x) - \frac{\pi}{4}\mathrm{Ber}_n(x) + \sum_{k \geq 0} (-1)^k \frac{\psi(2k + 2)}{[(2k+1)!]^2} \left(\frac{x^2}{4}\right)^{2k+1}](../../../../math/9/6/1/961e9fa75b60da150750bb2b742133bc.png)
![\mathrm{Kei}(x) \sim -\sqrt{\frac{\pi}{2x}} e^{-\frac{x}{\sqrt{2}}} [f_2(x) \sin \beta + g_2(x) \cos \beta],](../../../../math/a/f/c/afcbe322ab043c648b2b9502db0a2701.png)

