User:JohnOwens/Orbital equations
From Wikipedia, the free encyclopedia
Contents |
Variables
Time-related
- ω angular velocity
- N rotational speed
- T time (of period)
Distance-related
- r radius
- v velocity (tangential)
- a acceleration
- ac centripetal acceleration
Gravitational
- MG product of central or total mass and gravitational constant
Cumulative equations





- ω2r3 = MG
- ωv = a
- ωMG = v3
- ω4MG = a3
- Tv = 2πr
- T2a = 4π2r
- T2MG = 4π2r3
- Ta = 2πv
- Tv3 = 2πMG
- T4a3 = 16π4MG
- 2πNr = v
- 4π2N2a = r
- 4π2N2r3 = MG
- 2πNv = a
- 2πNMG = v3
- 16π4N4MG = a3

- rv2 = MG

- v4 = aMG
Isolated variable equations
Time-related
ω
N
T
Distance-related
r
v
a
Gravitational
MG



- MG = rv2
- MG = r2a







![\omega = \sqrt[4]{a^3 \over MG}](../../../../math/d/3/c/d3c2ef2e8c7fd8c5cb471088ee7c24d0.png)






![N = {\sqrt[4]{a^3 \over MG} \over 2\pi} \equiv \sqrt[4]{a^3 \over 16\pi^4 MG}](../../../../math/9/0/4/904e8ba9faa5a312b842d1c1a4fab012.png)






![T = 2\pi\sqrt[4]{MG \over a^3} \equiv \sqrt[4]{16\pi^4 MG \over a^3}](../../../../math/1/9/e/19ef8f79830908f8c7a41081e43cca96.png)


![r = \sqrt[3]{MG \over \omega^2} \equiv \sqrt[3]{MG \over 4\pi^2 N^2} \equiv \sqrt[3]{T^2 MG \over 4\pi^2}](../../../../math/d/6/8/d68a98d93bdd7c82f58acea07bd802c6.png)





![v = \sqrt[3]{\omega MG} \equiv \sqrt[3]{2\pi N MG} \equiv \sqrt[3]{2\pi MG \over T}](../../../../math/6/c/e/6ce53767a48b8613e9f59b9250090761.png)


![v = \sqrt[4]{a MG}](../../../../math/6/7/5/675fe918714a2d0203aac6502bbbf633.png)


![a = \sqrt[3]{\omega^4 MG} \equiv \sqrt[3]{16\pi^4 MG \over T^4} \equiv \sqrt[3]{16\pi^4N^4 MG}](../../../../math/c/a/b/cab66086307b6e7abad0b5fa3fd5d595.png)




