User:Hithisishal

From Wikipedia, the free encyclopedia

\frac{4 sin^2(\theta)}{\lambda^2}=\frac{1}{d^2}=\frac{h^2+k^2+l^2}{a^2}


Contents

[edit] Headline text

S(hkl) = f(1 + e^{-i \pi(h+k+l)}) \!


S(hkl) = f(1 + e^{-i \pi(k+l)} + e^{-i \pi(h+l)} + e^{-i \pi(h+k)}) \!

n\lambda = 2d sin\theta \!

V = I R\!

[edit] Headline2 text

A = 4 \pi r^2 \,
V = \frac{4}{3}\pi r^3 \,
\frac{A}{V} = \frac{3}{r} \,
\frac{A}{V} \propto \frac{1}{r} \,


[edit] Headline2 text

E_1 = \frac{\sigma_0 cos \delta}{\epsilon_0} \,
E_2 = \frac{\sigma_0 sin \delta}{\epsilon_0} \,
\frac{E_2}{E_1} = tan \delta \,
E_r(t) = \frac{\sigma(t)}{\epsilon_0} \,
I= \frac{120 V}{400 \Omega} = 300 mA\,
I= \frac{12 V}{400 \Omega} = 30 mA\,
I= \frac{10 V - 1.6 V}{1.5 k \Omega} = 5.6 mA\,


P=V I \,
Duty Cycle= \frac{Pulse Width}{Pulse Period} = \frac{204 ns}{800 ns} = .255 = 25.5 \% \,

V_\mathrm{out} = V_\mathrm{in} \cdot \frac{R_1}{R_2+R_1+\frac{R_2R_1}{R_\mathrm{L}}}

\tau = R C = 1 k\Omega \cdot 1 \mu F = 1 ms\,
V(t) = V_0(1 - e^{\frac{-t}{R C}})\,\,
 V_\mathrm{out} =\frac{1}{RC} \int_0^t - {V_\mathrm{in}} \, dt + V_\mathrm{initial}

[edit] MSE 360

C \propto \frac{\kappa A}{t_d} \,
t_{effective} = \frac{\kappa_{Si}}{\kappa_{high-\kappa}}t_{actual}\,

[edit] MSE 393

F_{drag} = - b v \,

E_k = \frac{1}{2}mv^2 \,

[edit] ESE 206

 \frac{7V-1.9V}{10mA} = 510 \Omega \,


 Sin^{-1}(\theta_c) = \frac{N_{clad}}{N_{core}} = \frac{1.402}{1.492}, \theta_c = 70^{\circ} \,


 Sin(\theta_o) = \frac{N_{core}}{N_{air}} sin(90^{\circ}-\theta_c), \theta_o =  30.7^{\circ}\,


 7V\frac{5.1k\Omega}{5.1k\Omega 1.78k\Omega} = 5.2V \,

 7V\frac{1.78k\Omega}{5.1k\Omega 1.78k\Omega} = 1.8V \,

 Csin(\theta_c) = V_{min}, C_csin(70^{\circ}) =  0.94 C_c = 1.9\cdot10^8 m/s\,

 \frac{1}{\frac{1km}{C_c} - \frac{1km}{.94C_c}} = 3.15 MHz