Hermite's identity
From Wikipedia, the free encyclopedia
In mathematics, the Hermite's identity states that for every real number x and positive integer n the following holds:
[edit] Proof
Write
. There is exactly one
with 

Now ![\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor
=\sum_{k=0}^{k'-1} \lfloor x\rfloor+\sum_{k=k'}^{n-1} (\lfloor x\rfloor+1)=n\, \lfloor x\rfloor+n-k'
=n\, \lfloor x\rfloor+\lfloor n\,\{x\}\rfloor=\left\lfloor n\, [x]+n\, \{x\} \right\rfloor=\lfloor nx\rfloor](../../../../math/c/e/0/ce0c2ea35c8279cc4b629ab8af0d00c0.png)
In mathematics, the Hermite's identity states that for every real number x and positive integer n the following holds:

Write
. There is exactly one
with 

Now ![\sum_{k=0}^{n-1}\left\lfloor x+\frac{k}{n}\right\rfloor
=\sum_{k=0}^{k'-1} \lfloor x\rfloor+\sum_{k=k'}^{n-1} (\lfloor x\rfloor+1)=n\, \lfloor x\rfloor+n-k'
=n\, \lfloor x\rfloor+\lfloor n\,\{x\}\rfloor=\left\lfloor n\, [x]+n\, \{x\} \right\rfloor=\lfloor nx\rfloor](../../../../math/c/e/0/ce0c2ea35c8279cc4b629ab8af0d00c0.png)