User:Hashim100

From Wikipedia, the free encyclopedia

Contents

[edit] Lesson 1

[edit] Part 1

fraction

Fraction (means broken)

Example of fractions:

\frac{3}{4},\frac{4}{3},2\frac{4}{2}

[edit] General form of fraction

\frac{m}{n}=\frac{m...is...called...numerator}{n...is...called...denumerator}=
\frac{chosen...parts}{broken...parts}

[edit] Explanation

When the numerator is less than the denumerator (Long hand written)


numerator < denumerator (short hand written)

This symbol < means less than

Note: In maths they use symbol to shorten the written work

\frac{3}{4}

it is called proper fraction.

And when the numerator is greater than the denumerator (Long hand written)

numerator > denumerator (short hand written)

This symbol > means greater than

\frac{4}{3}

it is called an Improper fraction

The combination of a whole number and proper fraction

2\frac{1}{3}=2+\frac{1}{3}

it is called mixed fraction

[edit] Extra note

Mixed fraction is the result of an Improper fraction

2\frac{1}{3}=2+\frac{1}{3}=\frac{2\cdot3}{1\cdot3}+\frac{1}{3}=\frac{6+1}{3}=
\frac{7}{3}

[edit] Part 2 : Addition and subtraction of fraction

An example

1\cdots\frac{2}{5}+\frac{1}{5}

2\cdots\frac{2}{5}+\frac{1}{5}=\frac{2+1}{5}=\frac{3}{5}

The rule of adding fraction:

Fraction can only be added if they all have the same denumerator


Subtracting of fraction

An example

1\cdots\frac{2}{5}-\frac{1}{5}

2\cdots\frac{2}{5}-\frac{1}{5}=\frac{2-1}{5}=\frac{1}{5}

The rule of subtracting fraction:

Fraction can only be subtracted if they all have the same denumerator

[edit] Lesson 1: Part 2: Homework

Add the following fractions

1\cdots\frac{1}{2}+\frac{1}{3}+\frac{2}{5}

2\cdots\frac{5}{6}+\frac{1}{5}

3\cdots\frac{5}{8}+\frac{2}{4}


Subtract the following fractions

1\cdots\frac{1}{2}-\frac{1}{3}-\frac{2}{5}

2\cdots\frac{5}{6}-\frac{1}{5}

3\cdots\frac{5}{8}-\frac{2}{4}

[edit] Mixed exercise

1\cdots\frac{1}{2}+\frac{1}{3}-\frac{2}{5}

2\cdots\frac{5}{6}+\frac{1}{5}-\frac{4}{7}

3\cdots\frac{2}{8}-\frac{1}{4}+\frac{3}{9}


Adding with algebra

1\cdots\frac{1}{x}+\frac{1}{y}

2\cdots\frac{2}{a}+\frac{1}{b}

3\cdots\frac{3}{2(x-1)}+\frac{2}{y}

Subtracting with algebra

1\cdots\frac{1}{x}-\frac{1}{y}

2\cdots\frac{2}{a}-\frac{1}{b}

3\cdots\frac{3}{2(x-1)}-\frac{2}{y}


[edit] Part 3 : Indices

indices

{b^{x}=N}\cdots1

x is called the index and b is called the base

[edit] Multiplying indices

2\cdot2=2^2=4

2\cdot2\cdot2=2^3=8

2\cdot2\cdot2\cdot2=2^4=16

2\cdot2\cdot2\cdot2\cdot2=2^5=32

Let examine this one :

2\cdot2\cdot2\cdot2\cdot2=2^5

2^2\cdot2^3=2^{2+3}=2^5

When a set of same bases are being multiply, with same or different index, just add the indices like the above example

Caution : You can not do this

{2^3}\cdot{3^4}={6^7}

[edit] General formula of multiplying indices

b^{m}{\cdot}b^{m}=b^{n+m}

[edit] Exercise

1\cdots2^3\cdot2^4

2\cdots2^3\cdot2^4\cdot2^{-2}

3\cdots{a}^3\cdot{a}^4\cdot{a}^{-2}

4\cdots5^3\cdot5^3\cdot5^{8}

[edit] Dividing indices

\frac{2\cdot2\cdot2\cdot2\cdot2}{2}=\frac{2^5}{2}=2^{5-1}=2^4=16

\frac{2\cdot2\cdot2\cdot2}{2}=\frac{2^4}{2}=2^{4-1}=2^3=8

\frac{2\cdot2\cdot2}{2}=\frac{2^3}{2}=2^{3-1}=2^2=4

\frac{2\cdot2}{2}=\frac{2^2}{2}=2^{2-1}=2^1=2

\frac{2}{2}=2^{1-1}=2^0=1

When a set of same bases are being divided, with same or different index, just subtract the indices like the above examples

[edit] Special case

2^0=1\cdots1

This is a very important case

[edit] General formula of dividing indices

\frac{b^m}{b^m}=b^{n-m}

[edit] Exercise

1\cdots\frac{3^5}{3^3}

2\cdots\frac{6^{-2}}{6^3}

3\cdots\frac{a^5}{a^3}

[edit] The power of indices

2^2\cdot2^2\cdot2^2=2^{2+2+2}=\left(2^2\right)^3=2^{2\cdot3}=2^6

Examples

\left(a^5\right)^4=a^{5\cdot4}=a^{20}

\left(3^2\right)^5=2^{2\cdot5}=a^{15}

[edit] General power of indices

\left(b^n\right)^m=b^{nm}

[edit] Exercise

1\cdots\left(2^2\right)^5

2\cdots\left(3^3\right)^{-3}

3\cdots\frac{\left(4^4\right)^6}{\left(4^4\right)^3}

[edit] The end of lesson 1

[edit] Lesson 2

[edit] Linear equation

Example of linear equation

3x + 4 = 7

3x, where x is called the variable and the 3 is called the coefficient of x

4 and 7 are just the constant

[edit] Solving linear equation

Solve for x

4x-4=16\cdots(1)

Solution

4x-4=16\cdots(1)

4x-4+4=16+4\cdots(2)

4x=20\cdots(3)

\frac{4x}{4}=\frac{20}{4}\cdots(4)

x=5\cdots(5)

Check the answer

Solve for x

4x-4=16\cdots(1)

4(5)-4=16\cdots(2)

20-4=16\cdots(3)

16=16\cdots(4)

[edit] Exercise

5x+5=30\cdots(1)

-5x-5=5\cdots(2)

ax+b=c\cdots(3)

\frac{3}{x}+\frac{1}{2}=\frac{5}{4}\cdots(4)

3y-4=4y+5\cdots(5)

\frac{3y}{3}+\frac{1}{2}=\frac{5y}{4}-3\cdots(6)

Question number 7

Sam gave to his brother 3 box of sweet, 15 are missing the remaining left in the box 21

Find how many was in the box before 15 was missing

[edit] Quadratic equation

Example of quadratic equations

x^2-4=0\cdots(1)

x^2+4x=0\cdots(2)

x^2+4x+4=0\cdots(3)

[edit] Ways of solving quadratic equation

There 4 ways of solving this kind of equation, they are:

By formula

ax^2+bx+c=0\cdots(1)

x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}\cdots(2)

x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}\cdots(3)

Quadratic equation has two solutions (x1 and x2)

By factorisation

By Completing the square

By graph

[edit] The differences between Linear and quadratic equations

ax-b=0\cdots(1)

ax^2+bx+c=0\cdots(2)

In linear equation the variable x is raised to the power of

x^1\cdots(1)

Where as in the quadratic equation the variable x is raised to the power of

x^2\cdots(2)

[edit] Solving the quadratic by formula

An example

x^2+5x+6=0\cdots(1)

Step 1:

Where a = 1, b = 5 and c = 6

Step 2:

Formula

x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}\cdots(2)

x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}\cdots(3)


Step 3:

x_1=\frac{-5+\sqrt{5^2-4\cdot1\cdot6}}{2\cdot1}\cdots(1)

x_1=\frac{-5+\sqrt{25-24}}{2}\cdots(2)

x_1=\frac{-5+\sqrt{1}}{2}\cdots(3)

x_1=\frac{-5+1}{2}\cdots(4)

x_1=\frac{-4}{2}\cdots(5)

x_1=-2\cdots(6)


step 4:

x_2=\frac{-5-\sqrt{5^2-4\cdot1\cdot6}}{2\cdot1}\cdots(1)

x_2=\frac{-5-\sqrt{25-24}}{2}\cdots(2)

x_2=\frac{-5-\sqrt{1}}{2}\cdots(3)

x_2=\frac{-5-1}{2}\cdots(4)

x_2=\frac{-6}{2}\cdots(5)

x_2=-3\cdots(6)


Steps 5:

The solution of:

x^2+5x+6=0\cdots(1)

is

x_1=-2\cdots(2)

x_2=-3\cdots(3)


Check the answer

x^2+5x+6=0\cdots(1)

(-2)^2+5(-2)+6=0\cdots(2)

4-10+6=0\cdots(3)

-6+6=0\cdots(4)

0=0\cdots(5)


x^2+5x+6=0\cdots(1)

(-3)^2+5(-3)+6=0\cdots(2)

9-15+6=0\cdots(3)

-6+6=0\cdots(4)

0=0\cdots(5)

[edit] Exercise

x^2+x-6=0\cdots(1)

x^2+9x+20=0\cdots(2)

2x^2-5x-12=0\cdots(3)

[edit] Basic Factorising of Linear and quadratic equations

Factorise the following expression

Example 1:

y=3x+6\cdots(1)

Step 1:

y=3\cdot{x}+3\cdot{2}\cdots(2)

Step 2:

Common 3 and not (x+2)

Step 3:

y=3\left(x+2\right)\cdots(3)

Example 2:

z=xy+y^2\cdots(1)

Step 1:

z=x\cdot{y}+y\cdot{y}\cdots(2)

Step 2:

Common y and not (x+y)

Step 3:

z=y\left(x+y\right)\cdots(3)

Example 3:

T=x\left(a+b\right)+y\left(a+b\right)\cdots(1)

Step 1:

T=x\left(a+b\right)+y\left(a+b\right)\cdots(2)

Step 2:

Common (a+b) and not (x+y)

Step 3:

T=\left(a+b\right)\left(x+y\right)\cdots(3)

[edit] Exercise

Factorise the following expression

x=m^2+m^y\cdots(1)

z=10x^2y+15xy^2\cdots(2)

y=5x-10\cdots(3)

[edit] Factorisation of quadratic equation

General quadratic form

ax^2+bx+c=0\cdots(1)

Special condition

Let a = 1

x^2+bx+c=0\cdots(2)


The question will be of this form

x^2+bx+c=0\cdots(1)

The solution will be of this form

\left(x+A\right)\left(x+B\right)=0\cdots(2)

To find A and B we need to solve these basic 2 equations, they are:

A\cdot{B}=c\cdots(1)

A+B=b\cdots(2)


Examples

x^2+5x+6=0\cdots(1)

Step 1:

Solution of this form

\left(x+A\right)\left(x+B\right)=0\cdots(1)

Step 2:

Solve these 2 equations

A\cdot{B}=6\cdots(2)

A+B=5\cdots(3)

Step 3:

2\cdot{3}=6\cdots(2)

2+3=5\cdots(3)

Step 4

Where A = 2 and B = 3

Step 5

\left(x+A\right)\left(x+B\right)=0\cdots(4)

Step 6:

\left(x+2\right)\left(x+3\right)=0\cdots(5)

Step 7:

Let x = -2

\left(0\right)\left(x+3\right)=0\cdots(5)

0=0\cdots(6)

Step 8:

Let x = -3

\left(-3+3\right)\left(x+3\right)=0\cdots(7)

0=0\cdots(8)

Step 9:

The solution of this quadratic equation:

x^2+5x+6=0\cdots(1)

is

x = -2 and x = -3

Step 10:

Check the answer

Step 1:

\left(-2\right)^2+5\left(-2\right)+6=0\cdots(2)

4-10+6=0\cdots(3)

-6+6=0\cdots(4)

0=0\cdots(5)

Step 2:

\left(-3\right)^2+5\left(-3\right)+6=0\cdots(2)

9-15+6=0\cdots(3)

-6+6=0\cdots(4)

0=0\cdots(5)

[edit] Exercise

x^2+x-2=0\cdots(1)

x^2+7x+12=0\cdots(2)

x^2-6x+8=0\cdots(3)

[edit] Simultaneous equation

2 by 2 simultaneous equation

Example 1:

x+y=5\cdots(1)

x-y=1\cdots(2)

Example 2:

2x-3y=3\cdots(1)

5x+y=16\cdots(2)

[edit] First method of solving simultaneous equation

The elimination method

Example

x+y=5\cdots(1)

x-y=1\cdots(2)

Step 1:

(1) + (2)

x+x-y+y=1+5\cdots(3)

2x=6\cdots(4)

\frac{2x}{2}=\frac{6}{2}\cdots(5)

x=3\cdots(6)

Step 2:

Substitute x = 3 into (1)

x+y=5\cdots(1)

3+y=5\cdots(2)

3+y-3=5-3\cdots(3)

y=2\cdots(4)

Answer

The solution of this simultaneous equation

x+y=5\cdots(1)

x-y=1\cdots(2)

is

x =3 and y = 2

Check the answer

Step 1:

x+y=5\cdots(1)

x-y=1\cdots(2)

Step 2:

3+2=5\cdots(1)

3-2=1\cdots(2)


Example 2:

2x-3y=3\cdots(1)

5x+y=16\cdots(2)