User:Glengarry

From Wikipedia, the free encyclopedia

\frac{dS_n(t)}{dt}+\gamma_nS_n(t)=\zeta_n\mathrm{e}^{\beta t}

S_n(t)=\frac{2}{L}\int_{0}^{L}\phi(x,t)\sin\left(\frac{n\pi x}{L}\right)dx

\gamma_n=\left(\frac{n\pi}{L}\right)^2\frac{k_s}{cp}\,

\zeta_n=\frac{2J^2\rho}{cpn\pi}[1-\cos (n\pi)]\,

S_n(t)=\frac{\zeta_n}{\gamma_n+\beta}(\mathrm{e}^{\beta t}-\mathrm{e}^{-\gamma_n t})\,

\phi(x,t)=\sum_{n=1}^{\infty} \frac{\zeta_n}{\gamma_n+\beta}(\mathrm{e}^{\beta t}-\mathrm{e}^{-\gamma_n t})\sin\left(\frac{n\pi x}{L}\right)\,

T(x,t)=T_\infty+\sum_{n=1}^{\infty} \frac{\zeta_n}{\gamma_n+\beta}[1-\mathrm{e}^{-(\gamma_n+\beta)t}]\sin\left(\frac{n\pi x}{L}\right)\,

\tau_1=(\gamma_1+\beta)^{-1}=\left(\frac{\pi^2 k_s}{cpL^2}+\frac{Sk_a}{ghcp}\right)^{-1}