GCN5L2

From Wikipedia, the free encyclopedia


GCN5 general control of amino-acid synthesis 5-like 2 (yeast)
PDB rendering based on 1f68.
Available structures: 1f68, 1z4r
Identifiers
Symbol(s) GCN5L2; GCN5; MGC102791; PCAF-b; hGCN5
External IDs OMIM: 602301 MGI1343101 HomoloGene41343
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 2648 14534
Ensembl ENSG00000108773 ENSMUSG00000020918
Uniprot Q92830 Q99KW4
Refseq NM_021078 (mRNA)
NP_066564 (protein)
NM_001038010 (mRNA)
NP_001033099 (protein)
Location Chr 17: 37.52 - 37.53 Mb Chr 11: 100.52 - 100.53 Mb
Pubmed search [1] [2]

GCN5 general control of amino-acid synthesis 5-like 2 (yeast), also known as GCN5L2, is a human gene.[1]


[edit] References

[edit] Further reading

  • Berry R, Stevens TJ, Walter NA, et al. (1995). "Gene-based sequence-tagged-sites (STSs) as the basis for a human gene map.". Nat. Genet. 10 (4): 415–23. doi:10.1038/ng0895-415. PMID 7670491. 
  • Candau R, Moore PA, Wang L, et al. (1996). "Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5.". Mol. Cell. Biol. 16 (2): 593–602. PMID 8552087. 
  • Yang XJ, Ogryzko VV, Nishikawa J, et al. (1996). "A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A.". Nature 382 (6589): 319–24. doi:10.1038/382319a0. PMID 8684459. 
  • Wang L, Mizzen C, Ying C, et al. (1997). "Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation.". Mol. Cell. Biol. 17 (1): 519–27. PMID 8972232. 
  • Carter KC, Wang L, Shell BK, et al. (1997). "The human transcriptional adaptor genes TADA2L and GCN5L2 colocalize to chromosome 17q12-q21 and display a similar tissue expression pattern.". Genomics 40 (3): 497–500. doi:10.1006/geno.1996.4605. PMID 9073520. 
  • Barlev NA, Poltoratsky V, Owen-Hughes T, et al. (1998). "Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex.". Mol. Cell. Biol. 18 (3): 1349–58. PMID 9488450. 
  • Smith ER, Belote JM, Schiltz RL, et al. (1998). "Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members.". Nucleic Acids Res. 26 (12): 2948–54. PMID 9611240. 
  • Randhawa GS, Bell DW, Testa JR, Feinberg AP (1998). "Identification and mapping of human histone acetylation modifier gene homologues.". Genomics 51 (2): 262–9. doi:10.1006/geno.1998.5370. PMID 9722949. 
  • Xu W, Edmondson DG, Roth SY (1998). "Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates.". Mol. Cell. Biol. 18 (10): 5659–69. PMID 9742083. 
  • Brand M, Yamamoto K, Staub A, Tora L (1999). "Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction.". J. Biol. Chem. 274 (26): 18285–9. PMID 10373431. 
  • McMahon SB, Wood MA, Cole MD (2000). "The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc.". Mol. Cell. Biol. 20 (2): 556–62. PMID 10611234. 
  • Kurooka H, Honjo T (2000). "Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5.". J. Biol. Chem. 275 (22): 17211–20. doi:10.1074/jbc.M000909200. PMID 10747963. 
  • Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE (2000). "Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain.". J. Mol. Biol. 304 (3): 355–70. doi:10.1006/jmbi.2000.4207. PMID 11090279. 
  • Col E, Caron C, Seigneurin-Berny D, et al. (2001). "The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat.". J. Biol. Chem. 276 (30): 28179–84. doi:10.1074/jbc.M101385200. PMID 11384967. 
  • Brand M, Moggs JG, Oulad-Abdelghani M, et al. (2001). "UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation.". EMBO J. 20 (12): 3187–96. doi:10.1093/emboj/20.12.3187. PMID 11406595. 
  • Gangloff YG, Pointud JC, Thuault S, et al. (2001). "The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger.". Mol. Cell. Biol. 21 (15): 5109–21. doi:10.1128/MCB.21.15.5109-5121.2001. PMID 11438666. 
  • Martinez E, Palhan VB, Tjernberg A, et al. (2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo.". Mol. Cell. Biol. 21 (20): 6782–95. doi:10.1128/MCB.21.20.6782-6795.2001. PMID 11564863. 
  • Yanagisawa J, Kitagawa H, Yanagida M, et al. (2002). "Nuclear receptor function requires a TFTC-type histone acetyl transferase complex.". Mol. Cell 9 (3): 553–62. PMID 11931763. 
  • Brès V, Kiernan R, Emiliani S, Benkirane M (2002). "Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication.". J. Biol. Chem. 277 (25): 22215–21. doi:10.1074/jbc.M201895200. PMID 11956210. 
  • Col E, Gilquin B, Caron C, Khochbin S (2002). "Tat-controlled protein acetylation.". J. Biol. Chem. 277 (40): 37955–60. doi:10.1074/jbc.M206694200. PMID 12154097.