Feynman parametrization
From Wikipedia, the free encyclopedia
Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics too.
Richard Feynman observed that:
which simplifies evaluating integrals like:
More generally, using the Dirac delta function:
Even more generally, provided that Re(αj)>0 for all 1 ≤ j ≤ n:
See also Schwinger parametrization.
![\frac{1}{AB}=\int^1_0 \frac{du}{\left[uA +(1-u)B\right]^2}](../../../../math/b/0/1/b01075c7b68a9176b1e228b7fcd7bce3.png)
![\int \frac{dp}{A(p)B(p)}=\int dp \int^1_0 \frac{du}{\left[uA(p)+(1-u)B(p)\right]^2}=\int^1_0 du \int \frac{dp}{\left[uA(p)+(1-u)B(p)\right]^2}.](../../../../math/2/2/1/221fd349d1ff7abd187b5f2088983fdc.png)
![\frac{1}{A_1\cdots A_n}=(n-1)!\int^1_0 du_1 \cdots \int^1_0 du_n \frac{\delta(u_1+\dots+u_n-1)}{\left[u_1 A_1+\dots +u_n A_n\right]^n}.](../../../../math/1/2/1/121b5e4d4bc67416a3713984a6847fd5.png)
![\frac{1}{A_1^{\alpha_1}\cdots A_n^{\alpha_n}}=\frac{\Gamma(\alpha_1+\dots +\alpha_n)}{\Gamma(\alpha_1)\cdots \Gamma(\alpha_n)}\int^1_0 du_1 \cdots \int^1_0 du_n \frac{\delta(u_1+\dots+u_n-1)u_1^{\alpha_1-1}\cdots u_n^{\alpha_n-1}}{\left[u_1 A_1+\dots +u_n A_n\right]^{\alpha_1+\dots+\alpha_n}}.](../../../../math/0/a/5/0a5584c588f456c158683de9d2713845.png)

