ECT2
From Wikipedia, the free encyclopedia
|
Epithelial cell transforming sequence 2 oncogene
|
||||||||||||||
| PDB rendering based on 2cou. | ||||||||||||||
| Available structures: 2cou | ||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | ECT2; FLJ10461; MGC138291 | |||||||||||||
| External IDs | OMIM: 600586 MGI: 95281 HomoloGene: 7298 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 1894 | 13605 | ||||||||||||
| Ensembl | ENSG00000114346 | ENSMUSG00000027699 | ||||||||||||
| Uniprot | Q9H8V3 | Q3TZP2 | ||||||||||||
| Refseq | NM_018098 (mRNA) NP_060568 (protein) |
NM_007900 (mRNA) NP_031926 (protein) |
||||||||||||
| Location | Chr 3: 173.95 - 174.02 Mb | Chr 3: 27.29 - 27.34 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
Epithelial cell transforming sequence 2 oncogene, also known as ECT2, is a human gene.[1]
The protein encoded by this gene is a transforming protein that is related to Rho-specific exchange factors and yeast cell cycle regulators. The expression of this gene is elevated with the onset of DNA synthesis and remains elevated during G2 and M phases. In situ hybridization analysis showed that expression is at a high level in cells undergoing mitosis in regenerating liver. Thus, this protein is expressed in a cell cycle-dependent manner during liver regeneration, and is thought to have an important role in the regulation of cytokinesis.[1]
[edit] References
[edit] Further reading
- Takai S, Long JE, Yamada K, Miki T (1995). "Chromosomal localization of the human ECT2 proto-oncogene to 3q26.1-->q26.2 by somatic cell analysis and fluorescence in situ hybridization.". Genomics 27 (1): 220-2. doi:. PMID 7665179.
- Miki T, Smith CL, Long JE, et al. (1993). "Oncogene ect2 is related to regulators of small GTP-binding proteins.". Nature 362 (6419): 462-5. doi:. PMID 8464478.
- Hillier LD, Lennon G, Becker M, et al. (1997). "Generation and analysis of 280,000 human expressed sequence tags.". Genome Res. 6 (9): 807-28. PMID 8889549.
- Tatsumoto T, Xie X, Blumenthal R, et al. (1999). "Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis.". J. Cell Biol. 147 (5): 921-8. PMID 10579713.
- Kimura K, Tsuji T, Takada Y, et al. (2000). "Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation.". J. Biol. Chem. 275 (23): 17233-6. doi:. PMID 10837491.
- Wennerberg K, Ellerbroek SM, Liu RY, et al. (2003). "RhoG signals in parallel with Rac1 and Cdc42.". J. Biol. Chem. 277 (49): 47810-7. doi:. PMID 12376551.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi:. PMID 12477932.
- Matsuda A, Suzuki Y, Honda G, et al. (2003). "Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways.". Oncogene 22 (21): 3307-18. doi:. PMID 12761501.
- Saito S, Tatsumoto T, Lorenzi MV, et al. (2004). "Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains.". J. Cell. Biochem. 90 (4): 819-36. doi:. PMID 14587037.
- Hara T, Ishida H, Raziuddin R, et al. (2004). "Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells.". Mol. Biol. Cell 15 (3): 1172-84. doi:. PMID 14668487.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi:. PMID 14702039.
- Liu XF, Ishida H, Raziuddin R, Miki T (2004). "Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity.". Mol. Cell. Biol. 24 (15): 6665-75. doi:. PMID 15254234.
- Kim JE, Billadeau DD, Chen J (2005). "The tandem BRCT domains of Ect2 are required for both negative and positive regulation of Ect2 in cytokinesis.". J. Biol. Chem. 280 (7): 5733-9. doi:. PMID 15545273.
- Oceguera-Yanez F, Kimura K, Yasuda S, et al. (2005). "Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.". J. Cell Biol. 168 (2): 221-32. doi:. PMID 15642749.
- Yüce O, Piekny A, Glotzer M (2007). "An ECT2-centralspindlin complex regulates the localization and function of RhoA.". J. Cell Biol. 170 (4): 571-82. doi:. PMID 16103226.
- Niiya F, Xie X, Lee KS, et al. (2006). "Inhibition of cyclin-dependent kinase 1 induces cytokinesis without chromosome segregation in an ECT2 and MgcRacGAP-dependent manner.". J. Biol. Chem. 280 (43): 36502-9. doi:. PMID 16118207.
- Zhao WM, Fang G (2005). "MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis.". Proc. Natl. Acad. Sci. U.S.A. 102 (37): 13158-63. doi:. PMID 16129829.
- Hara T, Abe M, Inoue H, et al. (2006). "Cytokinesis regulator ECT2 changes its conformation through phosphorylation at Thr-341 in G2/M phase.". Oncogene 25 (4): 566-78. doi:. PMID 16170345.
- Niiya F, Tatsumoto T, Lee KS, Miki T (2006). "Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA.". Oncogene 25 (6): 827-37. doi:. PMID 16247472.
- Nishimura Y, Yonemura S (2006). "Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis.". J. Cell. Sci. 119 (Pt 1): 104-14. doi:. PMID 16352658.

