Talk:Eötvös experiment
From Wikipedia, the free encyclopedia
Contents |
[edit] Clarification
Noether's theorem: Every continuous symmetry is coupled to a conserved observable; every conserved observable is coupled to a continuous symmetry - hence the symmetry-property table. No observable coupled to an internal (gauge) symmetry can first-order affect rotation or translation. Any Eötvös experiment opposing internal symmetries' observables (e.g., baryon number) must first-order fail (null, give no net ouput). Why bother doing it?
The only discontinuous external symmetry is parity. Parity is unconstrained by Noether's theorem. Opposing chemically identical opposite parity mass distributions, a parity Eötvös experiment, is the only really interesting Eötvös experiment.
An Eötvös experiment opposes test masses in a vertical torsion balance, http://www.npl.washington.edu/eotwash/experiments/equivalencePrinciple/newWashPendulum.jpg Only the net difference of a shared property is active mass. Composition variables are a very small fraction of total mass at the start, hence that table. The difference of two small numbers is smaller still. Parity divergence arises in part from difference of the squares of the distances between a mass distribution and the best fit to corresponding points of its superposed mirror image reflected along all three axes, http://www.mazepath.com/uncleal/invert.gif Only considering atomic nuclei, 99.97% of opposite parity test masses is active mass. That is a 400X increase in signal over the best composition Eötvös experiments for the same loaded total mass.
How does one locate and compare locations of all atomic nuclei in lumps of stuff? The relative positions of all nuclei are known in single crystals (in principle - grow quality crystals) given crystal structure data: Crystallographic space group; unit cell axis lengths a,b,c; unit cell angles α,β,γ; and unique atom fractional coordinates within the unit cell - e.g., a standard CIF file.
Quantitative parity divergence of a mass distribution can be calculated using Petitjean's QCM software, J. Math. Phys. 40(9) 4587 (1999) and http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html#QCM CHI=zero is achiral, CHI=1 is perfectly parity divergent. Petitjean and I calculated quartz with a powerful subset of QCM, http://www.mazepath.com/uncleal/qzdense.png Sold single crystal α-quartz is a winner. So is cinnabar, http://www.mazepath.com/uncleal/hgsdense.png A centimeter test mass is 10^7 angstroms or log(radius)=7. As you can see, 1-CHI rapidly deeply approaches zero, or CHI rapidly deeply approaches perfect CHI=one.
How's that, folks? —Preceding unsigned comment added by 68.5.79.254 (talk) 23:43, 4 April 2008 (UTC)
The article is somewhat inconsistent - what does the Noether theorem have to do with Eotvos experiment? I see no point in putting information about symmetries etc. next to the history of the experiment.
[edit] The second half of the article is terrible
When the article begins to discuss Noether's theorem, it becomes incomprehensible to anyone who's unfamiliar with Noether's theorem. (And, I suspect, it doesn't make much sense even to a person familiar with Noether's theorem.) This part of the article needs extensive work. 71.219.236.253 (talk) 14:28, 24 November 2007 (UTC)
The second half of the article seems to be the work of a solidly crazy crackpot who runs a pseudoscience website at [1]. Warning, plenty of racism for good measure as well. Since what's in this article is now nonsense, I'm removing the entire bad section. Vonspringer (talk) 01:16, 10 June 2008 (UTC)
[edit] Diagram
Could we get a picture or diagram for this article? Has anybody asked the author of the "One Hundred Years" reference? --W0lfie (talk) 22:11, 11 January 2008 (UTC)
- I was thinking about trying a diagram for this article. Should I prioritize doing a diagram for the first of his experiments? Iomesus (talk) 22:18, 4 March 2008 (UTC)
[edit] Centripetal?
Also, what is meant by "the centripetal force due to the rotation of the Earth"? From the definition in the linked article, the only centripetal force keeping us on the Earth is gravity, so that's a bit like saying "Two primary forces act on the balanced masses, gravity and gravity." Perhaps it's referring to the fictitious forces associated with a Rotating reference frame, which would make sense, since they are related to inertia, as this experiment is. But I didn't want to be presumptuous and change it. I know a lot of people get touchy with the whole centripetal/centrifugal thing. Maybe there's a better way to word that paragraph, but I'm not familiar enough with the experiment to do it right. --W0lfie (talk) 22:11, 11 January 2008 (UTC)

