User:Dylanwhs/dylwhs 2
From Wikipedia, the free encyclopedia


The numbers which are subtracted from the Root form a series Sn = 1 + 7 + 19 + 37 + .....
If one looks at the sum, the number of terms relates to the cube root of the sum itself.
1:~ 1 2:~ 1 + 7 3:~ 1 + 7 + 19 4:~ 1 + 7 + 19 + 37 5:~ 1 + 7 + 19 + 37 + 61 . . n:~ 1 + 7 + 19 + 37 + 61 + ....... +
Notice also that these terms can be written as
n:~ 1 + (1+6) + (1+18) + (1+36) + (1+60) + .... +
= 1 + (1 + 6) + (1 +6 + 12) + (1+6+12+18) + (1+6+12+18+24) + .... = 1 + (1 + A) + (1 + B) + (1 + C) + (1 + D) +
Where
A = 6 B = 6 + 12 C = 6 + 12 + 18 D = 6 + 12 + 18 + 24
1 occurs n times 6 = 6.1 occurs n-1 times
12 = 6.2 occurs n-2 times 18 = 6.3 occurs n-3 times 24 = 6.4 occurs n-4 times
The term which occurs 1 times only will be 6.(n-1)
Thus the sum becomes
Sn = 1 + n + 6[1.(n − 1) + 2.(n − 2) + 3(n − 3) + ..... + (n − 1)(n − (n − 1))]
![= \sum{r=1}^n 1 + 6[ 1n-1^2 + 2n - 2^2 + 3n - 3^2 + ...... + n(n-1) - (n-1)^2 ]](../../../../math/7/7/1/771de1cdca8fa5e34aa25e54db0c0f34.png)
= n + 6[n(1 + 2 + 3 + .... + n − 1)] − 6[12 + 22 + 33 + .... + (n − 1)2] 




| ∑ | = n + 3n2(n + 1) − n(n + 1)(2n + 1) |
| n |
| ∑ | = n + 3n3 + 3n2 − [2n3 + 3n2 + n] |
| n |
| ∑ | = (3 − 2)n3 + (3 − 3)n2 + (1 − 1)n = n3 + 0 + 0 |
| n |
| ∑ | = n3 |
| n |
Therefore:
Sn = n3

