Image:Diffeomorphism of a square.svg

From Wikipedia, the free encyclopedia

Diffeomorphism_of_a_square.svg (SVG file, nominally 560 × 560 pixels, file size: 36 KB)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Illustration of a diffeomorphism.

Source

self-made with MATLAB

Date

04:25, 18 January 2008 (UTC)

Author

Oleg Alexandrov

Permission
(Reusing this image)

see below



Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] Source code (MATLAB)

% Compute a diffeomorphism from a square to a square which leave
% the boundary fixed.
 
function main()
 
   N = 20; % num of grid points
   epsilon = 0.1; % displacement for each small diffeomorphism
   num_comp = 10; % number of times the diffeomorphism is composed with itself
 
   S = linspace(-1, 1, N);
 
   [X, Y] = meshgrid(S);
 
   Z = X; W = Y;
 
   % take num_comp compositions of the same small diffeomorphism
   for iter = 1:num_comp
 
      for i=1:N
         for j=1:N
 
            [Z(i, j), W(i, j)] = small_diffeo(Z(i, j), W(i, j), epsilon);
 
         end
      end
 
   end
 
   % graphing settings
   lw = 2;
   mycolor = [1, 0, 0.1];
   small = 0.1;
 
   figure(1); clf; hold on;
   for i=1:N
      plot(X(:, i), Y(:, i), 'linewidth', lw, 'color', mycolor);
      plot(X(i, :), Y(i, :), 'linewidth', lw, 'color', mycolor);
   end
   axis([-1-small, 1+small, -1-small, 1+small]);
   axis equal; axis off;
 
   figure(2); clf; hold on;
   for i=1:N
      plot(Z(:, i), W(:, i), 'linewidth', lw, 'color', mycolor);
      plot(Z(i, :), W(i, :), 'linewidth', lw, 'color', mycolor);
   end
   axis([-1-small, 1+small, -1-small, 1+small]);
   axis equal; axis off;
 
function [z, w] = small_diffeo(x, y, epsilon);
 
   A1=epsilon*(cos(pi*x)+1)*(cos(pi*y)+1)/4.0;
   A2=epsilon*cos(pi*x/2)*cos(pi*y/2);
 
   A = (A1+A2)/2;
 
   z = x +(-y)*A;
   w = y +( x)*A;

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current04:25, 19 January 2008560×560 (36 KB)Oleg Alexandrov (tweak color and thickness)
04:25, 18 January 2008560×560 (29 KB)Oleg Alexandrov ({{Information |Description=Illustration of a diffeomorphism. |Source=self-made with MATLAB |Date=~~~~~ |Author= Oleg Alexandrov |Permission= |other_versions= }} {{PD-self}} ==Source code ([[:en:MATLAB|MATL)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):