User:David J Wilson/sandbox1

From Wikipedia, the free encyclopedia

[edit] Other formulas involving Euler's function

\;\varphi\left(n^m\right) = n^{m-1}\varphi(n)\text{ for }m\ge 1
\sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)} = \frac{n}{\varphi(n)}
\sum_{1\le k\le n \atop (k,n)=1}\!\!k = \frac{1}{2}n\varphi(n)\text{ for }n>1
\sum_{k=1}^n\varphi(k) = \frac{1}{2}\left(1+ \sum_{k=1}^n \mu(k)\left\lfloor\frac{n}{k}\right\rfloor^2\right)
\sum_{k=1}^n\frac{\varphi(k)}{k} = \sum_{k=1}^n\frac{\mu(k)}{k}\left\lfloor\frac{n}{k}\right\rfloor
\sum_{k=1}^n\frac{k}{\varphi(k)} = \mathcal{O}(n)
\sum_{k=1}^n\frac{1}{\varphi(k)} = \mathcal{O}(\log(n))
\sum_{1\le k\le n \atop (k,m)=1} 1 = n \frac {\varphi(m)}{m} + 
\mathcal{O} \left ( 2^{\omega(m)} \right ),

where m > 1 is a positive integer and ω(m) designates the number of distinct prime factors of m. (This formula counts the number of naturals less than or equal to n and relatively prime to m, additional material is listed among the external links.)