User:Danhoppe/Sandbox
From Wikipedia, the free encyclopedia
| Probability density function |
|
| Cumulative distribution function |
|
| Parameters | b > 0 scale (real) η > 0 shape (real) |
|---|---|
| Support | ![]() |
| Probability density function (pdf) | ![]() |
| Cumulative distribution function (cdf) | ![]() |
| Mean |
where |
| Median | |
| Mode | for , for where![]() |
| Variance |
where |
| Skewness | |
| Excess kurtosis | |
| Entropy | |
| Moment-generating function (mgf) | |
| Characteristic function | |
The shifted Gompertz distribution is the distribution of the largest order statistic of two independent random variables which are distributed exponential and Gompertz with parameters b and b and η respectively. It has been used as a model of adoption of innovation.
Contents |
[edit] Specification
[edit] Probability density function
The probability density function of the shifted Gompertz distribution is:
where b > 0 is the scale parameter and η > 0 is the shape parameter of the shifted Gompertz distribution.
[edit] Cumulative distribution function
The cumulative distribution function of the shifted Gompertz distribution is:
[edit] Properties
The shifted Gompertz distribution is right-skewed for all values of η.
[edit] Shapes
The shifted Gompertz density function can take on different shapes depending on the values of the shape parameter η:
the probability density function has mode 0.
the probability density function has the mode at
where
is the smallest root of
which is ![x^\star = [3 + \eta - (\eta^2 + 2\eta + 5)^{1/2}]/(2\eta)](../../../../math/f/3/a/f3a80ad494b619e2b076918bfea2f4c9.png)
[edit] Related Distributions
If η varies according to a gamma distribution with shape parameter α and scale parameter β (mean = αβ), the cumulative distribution function is Gamma/Shifted Gompertz.
[edit] See also
[edit] References
Bemmaor, Albert C. (1994), "Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity", written at Boston, in G. Laurent, G.L. Lilien & B. Pras, Research Traditions in Marketing, Kluwer Academic Publishers, 201-223. Van Den Bulte, Christophe; Stefan Stremersch (2004). "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test". Marketing Science 23 (4): 530–544. Chandrasekaran, Deepa & Gerard J. Tellis (2007), "A Critical Review of Marketing Research on Diffusion of New Products", written at Armonk, in Naresh K. Malhotra, Review of Marketing Research, vol. 3, M.E. Sharpe.

![b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]](../../../../math/4/e/f/4efe11d1016f67a67761bf1697fb5a9b.png)

and ![\begin{align}\mathrm{E}[\ln(X)] =& [1 {+} 1 / \eta]\!\!\int_0^\eta \!\!\!\! e^{-X}[\ln(X)]dX\\ &- 1/\eta\!\! \int_0^\eta \!\!\!\! X e^{-X}[\ln(X)] dX \end{align}](../../../../math/6/d/6/6d64ff27547678b255a9d4e8e4f8d9f4.png)
for
for
![\begin{align}\mathrm{E}[\ln(X)^2] =& [1 {+} 1 / \eta]\!\!\int_0^\eta \!\!\!\! e^{-X}[\ln(X)]^2 dX\\ &- 1/\eta \!\!\int_0^\eta \!\!\!\! X e^{-X}[\ln(X)]^2 dX \end{align}](../../../../math/c/5/9/c5907931edbc26006537111d7271d976.png)
![f(x;b,\eta) = b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right] \mathrm{for}\ x > 0 \,\!](../../../../math/1/c/6/1c6fbafc95f778e3a757011a193e0f4f.png)


