From Wikipedia, the free encyclopedia

[edit] sample
Change (28) to Indefinite Integral
![\begin{align}
y & = A(t)\exp \int \frac{\partial x}{x+B(t)\exp[\frac{1}{\bar{\sigma}}\int \partial \log x]}\\
& = A(t)\exp \int \frac{x^{-1}\partial x}{1+B(t)x^{-1}\{\exp[\int \partial \log x]\}^\frac{1}{\bar{\sigma}}}\\
& = A(t)\exp \int \frac{x^{-1}\partial x}{1+B(t)x^{-1}\{\exp(\log x)\}^\frac{1}{\bar{\sigma}}}\\
& = A(t)\exp \int \frac{x^{-1}dx}{1+B(t)x^{\frac{1}{\bar{\sigma}}-1}}\\
& = A(t)\exp \int \frac{d(\log x)}{1+B(t)\exp[(\frac{1}{\bar{\sigma}}-1)\log x]}
\end{align}](../../../../math/3/4/f/34fd6917c770dc3cfc6b80fee88308c5.png)
Let w = logx, then the formular turns to be
![y = A(t)\exp \int \frac{dw}{1+B(t)\exp[(\frac{1}{\bar{\sigma}}-1)w]}](../../../../math/1/8/2/182194f29c4dd68098a567a4bf85ed5f.png)
On the other hand, we have (adapted from the Integral Formula Table)
![\int \frac{dx}{a+be^{mx}}=\tfrac{1}{am}[mx-\log(a+be^{mx})]](../../../../math/4/2/2/422042b7b8d974595a6b0dc0625d7306.png)
In this case, a = 1,b = B(t) and
, use the formula above, we get
![\begin{align}
y(x,t) & = A(t) \exp\{ \frac{1}{\frac{1}{\bar{\sigma}}-1} [(\frac{1}{\bar{\sigma}}-1)w - \log(1+B(t)e^{\frac{1}{(\bar{\sigma}}-1)w})]\}\\
& = A(t) \exp\{ \frac{1}{\frac{1}{\bar{\sigma}}-1} [(\frac{1}{\bar{\sigma}}-1)\log x - \log(1+B(t)e^{\frac{1}{(\bar{\sigma}}-1)\log x})]\}\\
& = A(t) \exp\{ \frac{-1}{\frac{1}{\bar{\sigma}}-1} [-(\frac{1}{\bar{\sigma}}-1)\log x + \log(1+B(t)x^{(\frac{1}{\bar{\sigma}}-1)})]\}\\
& = A(t) [\exp\{ -\log x^{\frac{1}{\bar{\sigma}}-1} + \log(1+B(t)x^{\frac{1}{(\bar{\sigma}}-1)})\}]^{\frac{-1}{\frac{1}{\bar{\sigma}}-1}}\\
& = A(t) [\exp\{\log(\frac{1+B(t)x^{\frac{1}{(\bar{\sigma}}-1)}}{x^{\frac{1}{\bar{\sigma}}-1}})\}]^{\frac{-\bar{\sigma}}{1-\bar{\sigma}}}\\
& = A(t) (x^{-(\frac{1-\bar{\sigma}}{\bar{\sigma}})}+B(t))^{-(\frac{\bar{\sigma}}{1-\bar{\sigma}})}\\
\end{align}](../../../../math/0/4/e/04ef3830631c059ad771eb72a1136048.png)