Curie point
From Wikipedia, the free encyclopedia
| This article does not cite any references or sources. (December 2007) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
The Curie point (Tc), or Curie temperature, is a term in physics and materials science, named after Pierre Curie (1859-1906), and refers to a characteristic property of a ferromagnetic or piezoelectric material.
Contents |
[edit] Curie point in ferromagnetic materials
The Curie point of a ferromagnetic material is the temperature above which it loses its characteristic ferromagnetic ability. At temperatures below the Curie point the magnetic moments are partially aligned within magnetic domains in ferromagnetic materials. As the temperature is increased towards the Curie point, the alignment (magnetization) within each domain decreases. Above the Curie point, the material is purely paramagnetic and there are no magnetized domains of aligned moments.
At temperatures above the Curie point, an applied magnetic field has a paramagnetic effect on the magnetization, but the combination of paramagnetism with ferromagnetism leads to the magnetization following a hysteresis curve with the applied field strength. The destruction of magnetization at the Curie temperature is a second-order phase transition and a critical point where the magnetic susceptibility is theoretically infinite.
One application of this effect is in magneto-optical storage media, where it is used for erasing and writing of new data. Famous examples include the Sony Minidisc format, as well as the defunct CD-MO format.
Other uses include temperature control in soldering irons such as the Weller WTCPT and, in general, where a temperature-controlled magnetization is desirable.
[edit] Curie temperature in piezoelectric materials
In analogy to ferromagnetic materials, the Curie temperature is also used in piezoelectric materials to describe the temperature above which the material loses its spontaneous polarization and piezoelectric characteristics. In lead zirconate titanate (PZT), the material is tetragonal below Tc and the unit cell contains a displaced central cation and hence a net dipole moment. Above Tc, the material is cubic and the central cation is no longer displaced from the centre of the unit cell. Hence, there is no net dipole moment and no spontaneous polarization.
Curie-Weiss law k = C / (T − Weiss constant)
[edit] See also
- See ferromagnetism for a list of ferromagnetic materials and their Curie temperatures.
- Ferroelectric effect
- Néel temperature
[edit] External links
- Ferromagnetic Curie Point. Video by Walter Lewin, M.I.T.

