User:Cornince

From Wikipedia, the free encyclopedia

Hiragana/Katakana: むす かま みずかわで にほん

English: tie construct by oneself Japan

妙子さん、 スター ヲルスを 水曜日の 夜中に 見たい です か。

\sum_{i=m}^{i_p} \! {}^p \  f(i) = 
\sum_{i_{p-1}=m}^{i_p} \, \sum_{i_{p-2}=m}^{i_{p-1}} \, \sum_{i_{p-3}=m}^{i_{p-2}} ... 
\sum_{i_2=m}^{i_3} \, \sum_{i_1=m}^{i_2} \, \sum_{i_0=m}^{i_1} 
f(i_0)
\,

\sum_{i=m}^{i_0} \! {}^0 \  \mathit{f}(i) = \mathit{f}(i_0)\,

\sum_{i=m}^{i_1} \! {}^1 \  \mathit{f}(i) = \sum_{i_0=m}^{i_1} \mathit{f}(i_0)\,

\mathrm{If \ } \mathit{g}(n) = \sum_{i=m}^n \! {}^{-p} \, \mathit{f}(i), \  
\mathrm{then \ }  \mathit{f}(n) = \sum_{i=m}^n \! {}^{p} \, \mathit{g}(i).
\,

\sum_{i=m}^{i_p} \! {}^p \  \mathit{f}(i) = 
\sum_{i_{p-1}=m}^{i_p} \left [ \sum_{i=m}^{i_{p-1}} \! {}^{p-1} \,  \mathit{f}(i) \right ]
\,


\sum_{i_{p-1}=m}^{i_p} \left [ \sum_{i=m}^{i_{p-1}} \! {}^{p-1} \,  \mathit{f}(i) \right ] = 
\sum_{i=m}^{m} \! {}^{p-1} \,  \mathit{f}(i) + 
\sum_{i=m}^{m+1} \! {}^{p-1} \,  \mathit{f}(i) + 
\sum_{i=m}^{m+2} \! {}^{p-1} \,  \mathit{f}(i) + \, ... + \,
\sum_{i=m}^{i_p - 2} \! {}^{p-1} \,  \mathit{f}(i) +
\sum_{i=m}^{i_p - 1} \! {}^{p-1} \,  \mathit{f}(i) + 
\sum_{i=m}^{i_p} \! {}^{p-1} \,  \mathit{f}(i)
\,

\sum_{i=m}^{n} \mathit{f}(i) = \sum_{i=m+u}^{n+u} \mathit{f}(i - u)
\,

\sum_{i=m}^{n} \mathit{f}(i) = \mathit{f}(m) + \mathit{f}(m+1) + \mathit{f}(m+2) 
+ \, ... \, +
\mathit{f}(n-2) + \mathit{f}(n-1) + \mathit{f}(n)
\,

\,\! \begin{array}{lcl}
\sum_{i=m+u}^{n+u} \mathit{f}(i - u) & = &
\mathit{f}((m+u) - u) + \mathit{f}((m+u+1) - u) + \mathit{f}((m+u+2) - u) \\ & &  + \, ... \, +
\mathit{f}((n+u-2) - u) + \mathit{f}((n+u-1) - u) + \mathit{f}((n+u) - u)        \\ \\
& = & \mathit{f}(m) + \mathit{f}(m+1) + \mathit{f}(m+2) + \, ... \, +
\mathit{f}(n-2) + \mathit{f}(n-1) + \mathit{f}(n) \\ \\
& = & \sum_{i=m}^{n} \mathit{f}(i)
\end{array} \,

\,\! \sum_{i=m}^{n} \! {}^p \  \mathit{f}(i) = \textstyle \! {}_p \! \sum_{i=m}^n \mathit{f}(i)\,

\,\! \begin{array}{lcl}
{}_p \! \sum_{i=m}^n r^i & = &
{r^{n+p} \over (r-1)^p} - 
\sum_{k=0}^{p-1} {r^{m + p - (k+1)} \prod_{j=1}^k (n - m + j) \over k! (r-1)^{p-k}}      \\
& = &
{r^{n+p} \over (r-1)^p} - 
\sum_{k=0}^{p-1} {r^{m + p - (k+1)} {(n - m + k)! \over (n - m)!} \over (r-1)^{p-k} k!}  \\
& = & 
{r^{n+p} \over (r-1)^p} - 
\sum_{k=0}^{p-1} \left ({r^{m + p - (k+1)} \over (r-1)^{p-k}} \right ) {{n - m + k} \choose k} 
\end{array}\,


\mathrm{For\ natural\ numbers\ } q\ \mathrm{and\ } t \ge q, \quad 
\sum_{z=q}^{t} {z \choose q} = {t + 1 \choose q + 1}.
\,

t = q, \quad \sum_{z=q}^{q} {z \choose q} = {q \choose q} = 1 = {q + 1 \choose q + 1}
\,

t = c, \quad \sum_{z=q}^{c} {z \choose q} = {c + 1 \choose q + 1}
\,

t = c + 1, \quad \sum_{z=q}^{c+1} {z \choose q} 
 = \sum_{z=q}^{c} {z \choose q} + {c + 1 \choose q}
 = {c + 1 \choose q + 1} + {c + 1 \choose q} 
 = {(c + 1) + 1 \choose q + 1}
\,


\begin{align}
n \ge m,&\sum_{i=m}^{n} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ]
& = & \sum_{j=m}^{m} {(m) - j + k \choose k} f(j) + \sum_{j=m}^{m+1} {(m+1) - j + k \choose k} f(j) \\
&& & + \sum_{j=m}^{m+2} {(m+2) - j + k \choose k} f(j) + \cdots + \sum_{j=m}^{n-2} {(n-2) - j + k \choose k} f(j) \\
&& & + \sum_{j=m}^{n-1} {(n-1) - j + k \choose k} f(j) + \sum_{j=m}^{n} {(n) - j + k \choose k} f(j)
\\
&& = & \left [ {(m) - (m) + k \choose k} f(m) \right ] + \left [ {(m + 1) - (m) + k \choose k} f(m) \right. \\
&& & \left. + {(m + 1) - (m+1) + k \choose k} f(m+1) \right ] + \left [ {(m + 2) - (m) + k \choose k} f(m) \right. \\
&& & \left. + {(m + 2) - (m+1) + k \choose k} f(m+1) + {(m + 2) - (m+2) + k \choose k} f(m+2) \right ] \\
&& & + \cdots + \left [ {(n - 2) - (m) + k \choose k} f(m) + {(n - 2) - (m+1) + k \choose k} f(m+1) \right. \\
&& & \left. + {(n - 2) - (m+2) + k \choose k} f(m+2) + \cdots + {(n - 2) - (n - 4) + k \choose k} f(n - 4)\right.\\
&& & \left. + {(n - 2) - (n - 3) + k \choose k} f(n - 3) + {(n - 2) - (n - 2) + k \choose k} f(n - 2) \right ] \\
&& & +\left [ {(n - 1) - (m) + k \choose k} f(m) + {(n - 1) - (m+1) + k \choose k} f(m+1) \right. \\
&& & \left. + {(n - 1) - (m+2) + k \choose k} f(m+2) + \cdots + {(n - 1) - (n - 3) + k \choose k} f(n - 3)\right.\\
&& & \left. + {(n - 1) - (n - 2) + k \choose k} f(n - 2) + {(n - 1) - (n - 1) + k \choose k} f(n - 1) \right ] \\
&& & +\left [ {(n) - (m) + k \choose k} f(m) + {(n) - (m+1) + k \choose k} f(m+1) \right. \\
&& & \left. + {(n) - (m+2) + k \choose k} f(m+2) + \cdots + {(n) - (n - 2) + k \choose k} f(n - 2)\right.\\
&& & \left. + {(n) - (n - 1) + k \choose k} f(n - 1) + {(n) - (n) + k \choose k} f(n) \right ]
\\
&& = & \left [ {k \choose k} f(m) \right ] + \left [ {1 + k \choose k} f(m) + {k \choose k} f(m+1) \right ] \\
&& & + \left [ {2 + k \choose k} f(m) + {1 + k \choose k} f(m+1) + {k \choose k} f(m) \right ] \\
&& & + \cdots + \left [ {n - 2 - m + k \choose k} f(m) + {n - 3 - m + k \choose k} f(m+1) \right. \\
&& & \left. + {n - 4 - m + k \choose k} f(m+2) + \cdots + {2 + k \choose k}  f(n-4) \right. \\
&& & \left. + {1 + k \choose k} f(n-3) + {k \choose k} f(n-2) \right ] \\
&& & + \left [ {n - 1 - m + k \choose k} f(m) + {n - 2 - m + k \choose k} f(m+1) \right. \\
&& & \left. + {n - 3 - m + k \choose k} f(m+2) + \cdots + {2 + k \choose k}  f(n-3) \right. \\
&& & \left. + {1 + k \choose k} f(n-2) + {k \choose k} f(n-1) \right ] \\
&& & + \left [ {n - m + k \choose k} f(m) + {n - 1 - m + k \choose k} f(m+1) \right. \\
&& & \left. + {n - 2 - m + k \choose k} f(m+2) + \cdots + {2 + k \choose k}  f(n-2) \right. \\
&& & \left. + {1 + k \choose k} f(n-1) + {k \choose k} f(n) \right ]
\\
&& = & f(m) \left [ {k \choose k} + {1 + k \choose k} + {2 + k \choose k} \right. \\
&& & \left. + \cdots + {n - 2 - m + k \choose k} + {n - 1 - m + k \choose k} + {n - m + k \choose k} \right ] \\
&& & + f(m+1) \left [ {k \choose k} + {1 + k \choose k} + {2 + k \choose k} \right. \\
&& & \left. +  \cdots + {n - 3 - m + k \choose k} + {n - 2 - m + k \choose k} + {n - 1 - m + k \choose k} \right ] \\
&& & + f(m+2) \left [ {k \choose k} + {1 + k \choose k} + {2 + k \choose k} \right. \\
&& & \left. +  \cdots + {n - 4 - m + k \choose k} + {n - 3 - m + k \choose k} + {n - 2 - m + k \choose k} \right ] \\
&& & + \cdots + f(n-2) \left [ {k \choose k} + {1 + k \choose k} + {2 + k \choose k} \right ] \\
&& & + f(n-1) \left [ {k \choose k} + {1 + k \choose k} \right ] + f(n) \left [ {k \choose k} \right ]
\\
&& = & \sum_{j=m}^{n} {n - j + k+1 \choose k+1} f(j)
\end{align}\,


\begin{align}
n \ge m,\quad & \sum_{i=m}^{n} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ] & = & \sum_{j=m}^{n} {n - j + k+1 \choose k+1} f(j) \\

n = m,\quad & \sum_{i=m}^{m} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ] & = & \sum_{j=m}^{m} {(m) - j + k \choose k} f(j) \\
&& = & {m - (m) + k \choose k} f(m) = {k \choose k} f(m) = f(m) = {k + 1 \choose k + 1} f(m) \\
&& = & {(m) - (m) + k + 1 \choose k + 1} f(m) = \sum_{j=m}^{m} {(m) - j + k + 1 \choose k + 1} f(j)\\

n = x,\quad & \sum_{i=m}^{x} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ] & = & \sum_{j=m}^{x} {x - j + k+1 \choose k+1} f(j) \\

n=x+1,\quad & \sum_{i=m}^{x+1} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ] & = & 
      \sum_{j=m}^{x+1} {(x+1)-j+k \choose k} f(j) + \sum_{i=m}^{x} \left [ \sum_{j=m}^{i} {i - j + k \choose k} f(j) \right ] \\
&& = & \sum_{j=m}^{x+1} {(x+1)-j+k \choose k} f(j) + \sum_{j=m}^{x} {x - j + k+1 \choose k+1} f(j) \\
&& = & {(x+1)-(x+1)+k \choose k} f(x+1) \\
&&& + \sum_{j=m}^{x} {(x+1)-j+k \choose k} f(j) + \sum_{j=m}^{x} {x - j + k+1 \choose k+1} f(j) \\
&& = & f(x+1) + \sum_{j=m}^{x} {x - j + k + 1 \choose k} f(j) + \sum_{j=m}^{x} {x - j + k+1 \choose k+1} f(j) \\
&& = & f(x+1) + \sum_{j=m}^{x} \left [ {x - j + k + 1 \choose k} + {x - j + k + 1 \choose k + 1} \right ] f(j) \\
&& = & f(x+1) + \sum_{j=m}^{x} {x - j + k + 2 \choose k + 1} f(j) \\
&& = & {(x+1) - (x+1) + k + 1 \choose k + 1} f(x+1) + \sum_{j=m}^{x} {(x + 1) - j + k + 1 \choose k + 1} f(j) \\
&& = & \sum_{j=m}^{x+1} {(x + 1) - j + k + 1 \choose k + 1} f(j)
\end{align}\,


\mathrm{For \ a\ real\ number\ } r \ne 1\ 
\mathrm{and\ natural\ numbers\ } m,\ p,\ 
\mathrm{and\ } i_p,\ \mathrm{where\ } i_p \ge m,


\sum_{i=m}^{i_p} \!\! {}^p \, r^i = 
{r^{i_p+p} \over (r-1)^p} - 
\sum_{k=0}^{p-1} {r^{m + p - (k+1)} \prod_{j=1}^k (i_p - m + j) \over k! (r-1)^{p-k}}.
\,

p = 0, \quad \sum_{i=m}^{i_0} \!\! {}^0 \, r^i = 
r^{i_0}
\,

p = 1, \quad \sum_{i=m}^{i_1} \!\! {}^1 \, r^i = 
\cfrac{r^{i_1+1}}{(r-1)^1} - \cfrac{r^m}{(r-1)^1} = 
\cfrac{r^{i_1+1} - r^{m}}{r-1}
\,

p = 2, \quad \sum_{i=m}^{i_2} \!\! {}^2 \, r^i = 
\cfrac{r^{i_2+2}}{(r-1)^2} - \cfrac{r^{m+1}}{(r-1)^2} - \cfrac{r^m (i_2 - m + 1)}{(r-1)^1} = 
\cfrac{\cfrac{r^{i_2+2} - r^{m+1}}{r-1} - r^m (i_2 - m + 1)}{r-1}
\,

p = 3, \,

\quad \sum_{i=m}^{i_3} \!\! {}^3 \, r^i = 
\cfrac{r^{i_3+3}}{(r-1)^3} - \cfrac{r^{m+2}}{0! (r-1)^3} - 
\cfrac{r^{m+1} (i_3 - m + 1)}{1! (r-1)^2} - \cfrac{r^m (i_3 - m + 1)(i_3 - m + 2)}{2! (r-1)^1}
\,

 = 
\cfrac{\cfrac{\cfrac{r^{i_3+3} - r^{m+2}}{r-1} - r^{m+1} (i_3 - m + 1)}{r-1} - 
\tfrac{1}{2} r^m (i_3 - m + 1)(i_3 - m + 2)}{r-1}
\,

p = 4, \,

\quad \sum_{i=m}^{i_4} \!\! {}^4 \, r^i = 
\cfrac{r^{i_4+4}}{(r-1)^4} - \cfrac{r^{m+3}}{0! (r-1)^4} - 
\cfrac{r^{m+2} (i_4 - m + 1)}{1! (r-1)^3} 
 - \cfrac{r^{m+1} (i_4 - m + 1)(i_4 - m + 2)}{2! (r-1)^2}
\,


 - \cfrac{r^{m} (i_4 - m + 1)(i_4 - m + 2)(i_4 - m + 3)}{3! (r-1)^1}
\,
 = 
\cfrac{\cfrac{\cfrac{\cfrac{r^{i_4+4} - r^{m+3}}{r-1} - r^{m+2} (i_4 - m + 1)}{r-1} - 
\tfrac{1}{2} r^{m+1} (i_4 - m + 1)(i_4 - m + 2)}{r-1} - 
\tfrac{1}{6} r^{m} (i_4 - m + 1)(i_4 - m + 2)(i_4 - m + 3)}{r-1}
\,

p = a, \quad \sum_{i=m}^{i_a} \!\! {}^a \, r^i = 
{r^{{i_a}+a} \over (r-1)^a} - 
\sum_{k=0}^{a-1} {r^{m + a - (k+1)} \prod_{j=1}^k (i_a - m + j) \over k! (r-1)^{a-k}} 
\,

p = a+1, \quad \sum_{i=m}^{i_{(a+1)}} \!\! {}^{a+1} \, r^i = 
\sum_{{i_a}=m}^{i_{(a+1)}} \left [ \sum_{i=m}^{i_a} \!\! {}^a \, r^i \right ]
\,

 = \sum_{{i_a}=m}^{i_{(a+1)}} \left [
{r^{{i_a}+a} \over (r-1)^a} - 
\sum_{k=0}^{a-1} {r^{m + a - (k+1)} \prod_{j=1}^k (i_a - m + j) \over k! (r-1)^{a-k}} 
\right ] \,

 = \sum_{{i_a}=m}^{i_{(a+1)}} \left [
{r^{{i_a}+a} \over (r-1)^a} \right ]  - 
\sum_{{i_a}=m}^{i_{(a+1)}} \left [
\sum_{k=0}^{a-1} {r^{m + a - (k+1)} \prod_{j=1}^k (i_a - m + j) \over k! (r-1)^{a-k}} 
\right ] \,

 = 
{\sum_{{i_a}=m}^{i_{(a+1)}} \left ( r^{{i_a}+a} \right ) \over (r-1)^a}  - 
\sum_{{i_a}=m}^{i_{(a+1)}} \left [
\sum_{k=0}^{a-1} {r^{m + a - (k+1)} \left [{(i_a - m + k)! \over (i_a - m)!} \right ] 
\over (r-1)^{a-k} \qquad k!} 
\right ] \,

 = 
{r^a \sum_{{i_a}=m}^{i_{(a+1)}} \left ( r^{i_a} \right ) \over (r-1)^a}  - 
\sum_{{i_a}=m}^{i_{(a+1)}} \left [
\sum_{k=0}^{a-1} \left ( {r^{m + a - (k+1)} 
\over (r-1)^{a-k}} \right ) {i_a - m + k \choose k}
\right ] \,

 = 
{r^a \left ( {r^{i_{(a+1)} + 1} - r^m \over r-1} \right ) \over (r-1)^a}  - 
\sum_{k=0}^{a-1} \left [ \left ( {r^{m + a - (k+1)} \over (r-1)^{a-k}} \right )
\sum_{{i_a}=m}^{i_{(a+1)}} {i_a - m + k \choose k}
\right ] \,

= 
{r^{i_{(a+1)} + a + 1} - r^{m+a} \over (r-1)^{a+1}}  - 
\sum_{k=0}^{a-1} \left [ \left ( {r^{m + a - (k+1)} \over (r-1)^{a-k}} \right )
\sum_{i_a=k}^{i_{(a+1)} - m + k} {i_a \choose k}
\right ] \,

 = 
{r^{i_{(a+1)} + a + 1} \over (r-1)^{a+1}}  - {r^{m+a} \over (r-1)^{a+1}} - 
\sum_{k=0}^{a-1} \left ( {r^{m + a - (k+1)} \over (r-1)^{a-k}} \right )
{i_{(a+1)} - m + k + 1 \choose k + 1} 
\,

 =  
{r^{i_{(a+1)} + a + 1} \over (r-1)^{a+1}}  - {r^{m+a} \over (r-1)^{a+1}} - 
\sum_{k=1}^{(a+1)-1} \left ( {r^{m + a - ((k - 1)+1)} 
\over (r-1)^{a-(k - 1)}} \right )
{i_{(a+1)} - m + (k - 1)  + 1 \choose (k - 1) + 1} 
\,

 = 
{r^{i_{(a+1)} + a + 1} \over (r-1)^{a+1}}  - {r^{m+a} \over (r-1)^{a+1}} - 
\sum_{k=1}^{(a+1)-1} \left ( {r^{m + a - k + 1 - 1} 
\over (r-1)^{a - k + 1}} \right )
{i_{(a+1)} - m + k \choose k} 
\,

 = 
{r^{i_{(a+1)} + (a + 1)} \over (r-1)^{(a+1)}} - {r^{m+a} \over (r-1)^{a+1}} - \left [
\sum_{k=0}^{(a+1)-1} \left ( {r^{m + (a + 1) - k - 1} 
\over (r-1)^{(a + 1) - k}} \right )
{i_{(a+1)} - m + k \choose k}
- \left ( {r^{m+a} \over (r-1)^{a+1}} \right ) {i_{(a+1)} - m \choose 0} 
\right ] \,

 = 
{r^{i_{(a+1)} + (a + 1)} \over (r-1)^{(a+1)}} - 
\sum_{k=0}^{(a+1)-1} \left ( {r^{m + (a + 1) - (k + 1)} 
\over (r-1)^{(a + 1) - k}} \right )
{i_{(a+1)} - m + k \choose k} 
\,

 = 
{r^{i_{(a+1)} + (a + 1)} \over (r-1)^{(a+1)}} - 
\sum_{k=0}^{(a+1)-1} {r^{m + (a + 1) - (k+1)} \left [{(i_{(a+1)} - m + k)! 
\over (i_{(a+1)} - m)!} \right ] 
\over (r-1)^{(a+1)-k} \qquad k!} 
\,

\sum_{i=m}^{i_{(a+1)}} \!\! {}^{a+1} \, r^i = 
{r^{i_{(a+1)} + (a + 1)} \over (r-1)^{(a+1)}} - 
\sum_{k=0}^{(a+1)-1} {r^{m + (a+1) - (k+1)} \prod_{j=1}^k (i_{(a+1)} - m + j) 
\over k! (r-1)^{(a+1)-k}} 
\,



\begin{align}
p \ge 1, \quad 
&\sum_{i=m}^{i_p} \! {}^p \  f(i)  
& = &\sum_{i=m}^{i_p} {i_p - i + p - 1 \choose p - 1} f(i) \\

p = 1, \quad 
&\sum_{i=m}^{i_1} \! {}^1 \  f(i) 
& = &\sum_{i=m}^{i_1} {i_1 - i \choose 0} f(i) 
= \sum_{i=m}^{i_1} f(i) \\

p = s, \quad
&\sum_{i=m}^{i_s} \! {}^s \  f(i) 
& = & \sum_{i=m}^{i_s} {i_s - i + s - 1 \choose s - 1} f(i) \\

p = s + 1, \quad
&\sum_{i=m}^{i_{s+1}} \! {}^{s+1} \  f(i)
 & = & \sum_{i_s=m}^{i_{s+1}} \left [ \sum_{i=m}^{i_s} \! {}^s \,  \mathit{f}(i) \right ]
\\
&& = & \sum_{i_s=m}^{i_{s+1}} \left [ \sum_{i=m}^{i_s} {i_s - i + s - 1 \choose s - 1} f(i) \right ]
\\

\end{align}\,



\begin{align}
&= \sum_{i=m}^{i_{s+1}} f(i) \sum_{j=0}^{i_{s+1}-i} {j + s - 1 \choose s - 1} \\
&= \sum_{i=m}^{i_{s+1}} f(i) \sum_{j=s-1}^{i_{s+1}-i+s-1} {[j - (s-1)] + s - 1 \choose s - 1} \\
&= \sum_{i=m}^{i_{s+1}} f(i) \sum_{j=s-1}^{i_{s+1}-i+s-1} {j \choose s - 1} \\
&= \sum_{i=m}^{i_{s+1}} {i_{s+1} - i + (s+1) - 1 \choose (s+1) - 1} f(i)
\end{align}\,



\begin{align}
&= \sum_{i=m}^{i_{s+1}} {i_{s+1} - i + s - 1 \choose s - 1} \sum_{j=m}^{i} f(j)
\end{align}\,



f(x) = \dfrac{n-0}{h-0}x + 0 = \dfrac{n}{h}x
\,

F(x) = \dfrac{n}{2h}x^2 + C
\,

g(x) = \dfrac{n-b}{h-0}x + b = \dfrac{n-b}{h}x + b
\,

G(x) = \dfrac{n-b}{2h}x^2 + bx + C
\,

A_f = F(h) - F(0) = \left [ \dfrac{n}{2h}(h)^2 + C \right ] 
- \left [ \dfrac{n}{2h}(0)^2 + C \right ]
= \tfrac{1}{2} nh
\,

A_g = G(h) - G(0) = \left [ \dfrac{n-b}{2h}(h)^2 + b(h) + C \right ]
- \left [ \frac{n-b}{2h}(0)^2 + b(0) + C \right ]
= \tfrac{1}{2}nh - \tfrac{1}{2}bh + bh = \tfrac{1}{2}nh + \tfrac{1}{2}bh
\,

A = A_g - A_f = \left ( \tfrac{1}{2}nh + \tfrac{1}{2}bh \right ) 
- \left ( \tfrac{1}{2} nh \right ) 
= \mathbf{\tfrac{1}{2}bh}
\,


\begin{align}
&= (i_{k+1} - m + 1) {k-1 \choose k-1} \sum_{i=m}^{i_{k+1}} f(i) + (i_{k+1} - m) {k \choose k-1} \sum_{i=m}^{i_{k+1}-1} f(i) \\
&+ (i_{k+1} - m - 1) {k+1 \choose k-1} \sum_{i=m}^{i_{k+1}-2} f(i) + \ldots + 3 {i_{k+1} - m + 2 + k-1 \choose k-1} \sum_{i=m}^{m+2} f(i) \\
&+ 2 {i_{k+1} - m + 1 + k-1 \choose k-1} \sum_{i=m}^{m+1} f(i) + {i_{k+1} - m + k-1 \choose k-1} \sum_{i=m}^{m} f(i)
\end{align}\,

これ、ちょっとちがうね。


\begin{align}
&= f(m) \sum_{j=m}^{i_{k+1}} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1} 
  + f(m+1) \sum_{j=m}^{i_{k+1} - 1} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1} \\
&+ f(m+2) \sum_{j=m}^{i_{k+1} - 2} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1} + \ldots
  + f(i_{k+1}-2) \sum_{j=m}^{m+2} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1} \\
&+ f(i_{k+1}-1) \sum_{j=m}^{m+1} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1} 
  + f(i_{k+1}) \sum_{j=m}^{m} (i_{k+1} - j + 1) {j - m + k - 1 \choose k - 1}
\end{align}\,

=\sum_{i=m}^{i_{k+1}} f(i) \sum_{j=0}^{i_{k+1} - i} (i_{k+1} - j - m + 1) {j + k - 1 \choose k - 1}
\, これもちがう。