Conical function
From Wikipedia, the free encyclopedia
| This article or section is in need of attention from an expert on the subject. WikiProject Mathematics or the Mathematics Portal may be able to help recruit one. |
In mathematics, conical functions are functions which can be expressed in terms of Legendre functions of the first and second kind,
and
.
The functions
were introduced by Gustav Ferdinand Mehler, in 1868, when expanding in series the distance of a point on the axis of a cone to a point located on the surface of the cone. Mehler used the notation Kμ(x) to represent these functions. He obtained integral representation and series of functions representations for them. He also established an addition theorem for the conical functions. Carl Neumann obtained an expansion of the functions Kμ(x) in terms of the Legendre polynomials in 1881. Leonhardt introduced for the conical functions the equivalent of the spherical harmonics in 1882.
[edit] External links
- G. F. Mehler Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper Journal für die reine und angewandte Mathematik 68, 134 (1868).
- G. F. Mehler Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung Mathematische Annalen 18 p. 161 (1881).
- C. Neumann Ueber die Mehler'schen Kegelfunctionen und deren Anwendung auf elektrostatische Probleme Mathematische Annalen 18 p. 195 (1881).
- G. Leonhardt Integraleigenschaften der adjungirten Kegelfunctionen Mathematische Annalen 19 p. 578 (1882).
- Eric W. Weisstein, Conical function at MathWorld.
- Milton Abramowitz and Irene Stegun (Eds.) Handbook of Mathematical Functions (Dover, 1972) p. 337

