Talk:Computational chemistry/archive 1

From Wikipedia, the free encyclopedia

This is archive 1 up to December 31st 2006.

Contents

[edit] Semiempirical methods

As it stands, the article implies that classical force-field MM is considered a semiempirical method. I've never heard these methods described as semi-empirical, that term usually being reserved for parameterized quantum mechanical models like PM3, AM1, MNDO, etc. I think we need a separate section for the classical methods, since they are in practice a whole different animal from quantum calculations. Ed Sanville 03:33, 7 December 2005 (UTC)

I've moved the molecular mechanics section out of the semiempirical method section. They are classified as distinct topics in every book and article I've seen. Itub 00:44, 4 January 2006 (UTC)

The statement: "The opinion that computational chemistry would be ultimately able to predict mechanisms of such complex processes as biochemical reactions is now looked upon as unjustifiably optimistic."

Is not NPOV.. There are a number of highly regarded researchers in the field who do study biochemical reactions with quantum-chemical methods.

This is not entirely without controversy (no field of research really is), but the previous remark is not-neutral on the issue, rather it takes a rather damning view which is not representative of the general opinion within the field either.


Apart from the intro, this articles concentrates on QM methods to the exclusion of all others. It would be nice to have more balance and in particular some sort of list of all methods (force field, statistical mechanics, QM/DFT etc.) at the beginning in order of complexity/computational cost.


I don't think Computational chemistry is the branch of theoretical chemistry.

LiDaobing 16:07, 25 Jun 2004 (UTC)


As there is already a page for quantum chemistry, I think this page needs some revision. I'd agree that comp. chem. is a branch of theoretical chemistry -- but comp. chem. can also focus on the properties of molecular clusters, molecular dynamics, etc. -- not just "molecular properties."

I think some of the discussion of quantum-chemical methods belongs under quantum chemistry.

While I just created some stubs for the programs mentioned, I think it might be better to link to community pages like CCL.net and other directories of comp. chem. resources and databases than particular products. There are hundreds of programs and including some but not others might be construed as bias or advertising for particular packages.

Ghutchis 28 Jul 2004

[edit] Merge

I personnaly believe theoretical, quantum and computational chemistry should all be merged under the title theoretical chemistry. Vb 08:05, 19 July 2005 (UTC)

I think this would be a far too wide generalization. Karol 08:54, July 19, 2005 (UTC)
I agree with Karol. While there is significant overlap between theoretical, quantum and computational chemistry, they are definitely separate fields of endeavour. Theoretical chemistry does need expanding though, maybe with a brief summary of comp. chem., qm, stat. mech., chemical information, etc. I don't necessarily agree with what the current article states. I guess that's something else for my to-do list... Stewart Adcock 10:08, 19 July 2005 (UTC)
OK. I understand those three articles have distinct topics but I think they have such overlaps that a common article (with, of course, subsections and preliminary remarks, like the ones which are already in computational chemistry) could be less confusing for newcomers. For example it is sometimes difficult to decide whether a topic like Carr-Parrinello or molecular mechanics is something which belongs to theoretical, quantum or computational chemistry. But well, if you have ideas how to improve the theoretical and quantum chemistry articles so that they show clearly how they are separated from computational chemistry, I am of course a keen supporter Vb 14:26, 19 July 2005 (UTC)
If I can lend my own viewpoint, I would say that there is a clear methodological difference. Computational chemistry and quantum chemistry are narrow branches of theoretical chemistry, which is no dsicovery, I think. Therefore, theoretical chemistry encompasses alot more than these two fields put together - reaction kinetic theory, statistical mechanics used for chemical applications, mathematical chemistry, and even chemical database theory, to name a few. Whereas quantum chemistry uses quantum mechanics to solve question that are chemical in nature and thus restricts itself to providing reliable formulas based on decent approximations, computational chemistry aims to implement these formulas in actual computer code and thus is seen by some to be more in the computer science domain than a chemical science. Obviously, quantum and computational chemistry are very intimate with each other, but still are very distinct, just as theory and experiment are in physics. Hope this is all clear enough, and that it is in line with other quantum/computational chemists ideas of the trade. Karol 15:51, July 19, 2005 (UTC)
Now I understand a bit better. I don't know enough of theoretical chemical methods which are not within quantum or computational chemistry. So I think the conclusion is that the Wikipedia does not show up the full extend of theoretical chemistry and require strong expansion. But on the other hand, relative to the topic merging quantum/computational chemistry, the difference with experimental and theoretical physics is that both quantum and computational chemistry are usually performed by the same persons and are therefore sometimes very difficult to distinguish from each other. Of course there are people doing computational chemistry without knowing anything of quantum chemistry but is that really a reason to separate so clearly the two articles? 10:01, 20 July 2005 (UTC)
Re your last question: yes and no :) But still, computational chemistry (and even more computational biochemistry/biology) uses tools that aren't ab initio (read quantum chemistry). These are molecular mechanics, molecular dynamics, monte carlo and so forth. In any case, there are alot of computational techniques used to solve chemical problems that are empirical or semiempirical, so saying that computational chem. = quantum chem. is also probably not too good an idea. You're right that the information on Wikipedia is neither clear nor concise on this topic, but that is not a reason to merge ar delete articles - it is a reason for adding stub tags, however... Karol 11:20, July 20, 2005 (UTC)
OK. I agree.

[edit] Ab initio

I really like the multitude of edits people have made recently - the articles on computational/quantum chemistry are growing! I am wondering, however, if we should perhaps place Molecular Dynamics in this article beyond the scope of the Ab Initio section? I mean, it's just a question of terminology, as you can have Ab initio MD (AIMD), but maybe MD generally is not considered ab initio. What do other editors think? Karol 07:24, July 23, 2005 (UTC)

Nowadays, many article are published with names like "Ab initio study of...". They often present both the computation of the potential energy surface and the wave packet dynamics on it. Ab initio means solving the Schroedinger equation with the total molecular Hamiltonian without experimental parameters. The title they use is therefore fully legitimate. --131.220.68.177 10:28, 25 July 2005 (UTC)

I think the logical heirarchy of computational chemistry is:

  • Quantum
    • ab initio
    • semiempirical
    • DFT
    • MD (which can be any of the above)
  • Classical
    • MM
    • MD

Ed Sanville 15:51, 23 July 2005 (UTC)

From my point of view, this discussion must be done within an entire concept with the article quantum chemistry and theoretical chemistry. Please have a look to the discussion on the quantum chemistry article. As said there : there are NO classical treatment possible of the molecular electronic structure! I insist. :-) --131.220.68.177 10:00, 25 July 2005 (UTC)
I don't agree with Ed Sanville. I suggest this structure :
  • electronic structure
    • ab initio
    • DFT (whether DFT is ab initio or not is controversial)
    • semiempirical
      • semiempirical approximation to Hamiltonian matrix
      • molecular mechanics (MM)
  • chemical dynamics
    • Quantum
    • Semi-classical
    • Classical (MD)
See discussion on quantum chemistry to see my argumentation. --131.220.68.177 10:14, 25 July 2005 (UTC)
But, in that scheme, where would quantum MD methods come into play? And why is MM under semiempirical electronic structure, when MM typically means classical Newtonian physics with no reference whatever to the electronic structure of the system? Ed Sanville 06:05, 4 January 2006 (UTC)

[edit] Mills' Spreadsheet

I understand that the math and theory behind RL Mills' Hydrino theory is highly suspect. However, he has published a spreadsheet that purports to exactly solve the first twenty ionization levels of the first twenty elements, using only physical constants and basic algebra (i.e. non-iterative, closed-form solutions). Unless this spreadsheet derivation can be impeached in some way (and I haven't been able to yet), it would seem like a fairly significant event in the field of computational chemistry. Even assuming that Mills' is indeed 100% wrong, the mere existence of a closed-form model that derives even approximately close results would appear to be a useful tool. Can someone with more subject matter expertise please comment. Ronnotel 19:44, 25 November 2005 (UTC)

I don't think it's worthwhile to mention. Even if it has susbtance, it's not a core part of computational chemistry. Karol 20:00, 29 November 2005 (UTC)
I entirely agree with Karol. This should have no place here, at least at this stage. I looked through some of his stuff. He seems, for example, to have no idea that the many-body problem is the issue and thinks the failure to handle molecules in a closed form is a feature of quantum theory.Bduke 20:33, 29 November 2005 (UTC)
OK - you guys seem to know more about this than I do. Although I must wonder at what stage would it be relevant? Is it not the case that a closed-form solution to this problem, if it really worked, would be a pretty powerful tool? Working out protein folding in Excel would be kinda cool. Just sayin' Ronnotel 02:34, 30 November 2005 (UTC)
Current science would say that a closed form solution to this problem, which is a many-body problem, is not possible. It is not a matter of quantum theory. A closed-form equation for the motion of the moon is not possible because of the many gravitational forces on the moon (from sun, earth, other planets, etc.). Also, to put it bluntly, the time to add this to wikipedia is when it becomes widely accepted normal science and it is very far from that at present. We should not present new wild and unconventional ideas in wikiperia.Bduke 07:39, 30 November 2005 (UTC)
One more note. That something works doesn't make it all that hot of a science, only engineering, and that maybe for a year or two until something better comes around. Good scientific ideas must allow us to make predictions, beyond the subject we originally formulated them for. What we see here is a tool, which doesn't give us any information outside of what it is designed for. Karol 08:22, 30 November 2005 (UTC)
After looking at the spreadsheet for a little bit, it makes me very curious as to what's going on here. His calculated values for ionizations of multi-electron atoms are consistently within 1% of the experimental values. It would take a post-Hartree-Fock method with a large basis set to obtain such accurate values. This guy HAS to be doing some fudging of his data or something. I would say that if this model does what it claims to do, (i.e. calculate an analytical solution for the ionization energies of multi-electron systems), then it would be very, very, very interesting indeed. Of course, everything I know and learned says that's impossible, which makes it that much more interesting, (if it works). What is claimed here is far more than simply a tool, and it kind of freaks me out. Could somebody smarter than me figure out what this guy has done wrong, so I can sleep at night? Ed Sanville 02:24, 4 January 2006 (UTC)

Mills has expanded on his work and built out solutions to 19 different molecules. If I were about to spend >$100M on a protein-folding super-computer architecture, I'd be more than a little interested in what he's got. Unless his new work can be impeached, this article should be amended to reference him. 19 molecular solutions Ronnotel 15:35, 14 January 2006 (UTC)

I see that the core of his work is the assertion that the hydrogen atom can be shrunk to smaller than the known ground state. He calls it a 'hydrino' and claims that it will give unlimited cheap energy. He has raised 25 million dollors to set up Blacklight Power in New Jersey. He promised cheap power by 2000, but as far as I can see he still has not delivered. Nothing he has done has been subjected to peer review. There is some criticism of Mills' hydrino theory here, although some of the links from that page do not work. The later stuff on atoms and molecules flows from hydrino theory. If he is wrong at the beginning, everything is wrong. If he wants his work to be accepted, he should write up the molecular stuff for the Journal of Chemical Physics and then it will get proper peer review. I certainly do not have time to go through everything in detail. I do not think this has a place on the computational chemistry page unless other scientists can support it. However I think that the story of Randell Mills, Blacklight Power and his various theories does deserve a page on Wikipedia and it has already been done - see Hydrino theory and Randell Mills. The former page is in Category:Pseudophysics. Finally, I would hope that in the computational chemistry pages we could avoid topics that are controversial and may be pseudoscience, as this will lead to real arguments, delete/revert wars, etc. Bduke 20:48, 14 January 2006 (UTC)
I believe a number of his papers have been peer-reviewed in quality journals.Ronnotel 20:04, 17 January 2006 (UTC)
I think that is correct, but that they are not on the topic we are discussing. They are experimental papers on hydrides. If you know of a peer review paper on this material, please let me know and I'll check it out. I am following this up. I have asked about him on the Computational Chemistry e-mail list and so far nobody has given information of either a peer review of this work or an analysis that proves it is wrong. There is an analysis or perhaps attack on him in a book. The bookshop is holding it for me and I'll collect it today. More below. Bduke 22:06, 17 January 2006 (UTC)
I don't think it should be mentioned here until it is published in a stricter journal, cited by someone other by himself, confirmed by someone else, and/or shown to be useful. Itub 16:10, 16 January 2006 (UTC)
Galileo offered his inquisitor an opportunity to peer through a telescope and observe for himself the Jovian moons that, according Church-approved Ptolemaic celestial mechanics, could not exist. He was refused. Look at the spreadsheets. They're quite simple and they do what is claimed. Ronnotel 19:15, 17 January 2006 (UTC)
I have to still agree with Itub. The spreadsheets may be simple, but the derivation of the equations is very unclear. The online book is verbose yet fails to mention things that should be mentioned. I could perhaps accept that a classical approach could replace a quantum approach but I fail to see how he can get round the three body problem. An analytical solution for a problem with two or more electrons is not solvable analytically either in classical mechanics or quantum mechanics. In calculating the motion of satallites, moons etc., a serious numerical iteration process is needed. The situation in atoms and molecules is worse as none of the pair repulsion or attraction forces is small. The forces between the particles (electrons and nuclei) are all of comparable magnitude. Let us wait until his new work on molecules has been addressed by people other than himself. The atom calculations would not be relevant to this page anyway - more one on atomic physics. Bduke 22:06, 17 January 2006 (UTC)
I believe Mills' approach avoids the three-body problem because he does not assume that the electron is a point-charge, but a dirac-like 'shell' of rotating charge. The resulting 'force-balance' equation is a much simpler and more tractable approach. Regardless of whether the fundamental physics is correct or not, I believe directly observered results from the spreadsheets clearly meet the threshold of what would be of use to the reader, and therefore should be addressed in some way, as a highly-qualified link or whatever. Ronnotel 00:41, 18 January 2006 (UTC)
That makes no sense to me, but that is not the point. Let's just wait until someone other than Mills publishes something about it. This would make any WP comment more balanced. He only wrote the chapters of his on-line book in the last few weeks. Bduke 01:40, 18 January 2006 (UTC)

[edit] Semiempirical methods

This section is very thin and largely deals with pi electron models. I am thinking about having a go at a complete rewrite. I would first mention empirical methods - Huckel theory and extended Huckel theory as precursors of semi-empirical pi electron and all-valence electron methods. This would be a new page. I would then move the PPP stuff to a new pi electron semi-empirical page and add a link to a new page on valence electron semi-empirical methods. The later page would have links to Dewar (MOPAC) methods, ZINDO, SINDO etc. In turn these would link to existing links for AM1, PM3, etc which currently are only linked to in the program section, particularly the MOPAC link. What do people think? Add ideas here or on my talk page.

I would add that there has been some discussion on the computational chemistry list recently about there being no recent comprehensive review of all semi-empirical methods rather than a review on just MOPAC methods or just ZINDO or whatever. This is a big job, but maybe it could develop here on wikipedia.Bduke 06:13, 6 December 2005 (UTC)

I have largely done what I suggested above. I would welcome comments and criticism.Bduke 05:31, 21 December 2005 (UTC)

[edit] Famous Computational Chemists

I think on wikipedea we should honour those computational chemists who have made significant contributions. The link to the International Academy of Quantum Molecular Science gives a list of members, both still living and dead. This is a good place to start. Only a small proportion of members have a page. Most do not. I have added a few. Can others add some? I have also in many other places changed the link to people so that it is identical to the link on the list of Academy members. For example, the link to Rod Bartlett on the ACES program page, is now the same as on the Academy page. Perhaps others could check names in this way also. In this way, any new bio should work from other links.Bduke 05:31, 21 December 2005 (UTC)

I've just added Clemens Roothaan, George Hall and Frank Boys. Please add to them. Also, which others do you think are higher priority than other famous computation/theoretical/quantum chemists? --Bduke 05:37, 26 January 2006 (UTC)
I have added Isaiah Shavitt. I have a gap in his bio after his Ph D with Boys in 1957 to starting at the Technion in 1962. Can anyone fill that gap? --Bduke 02:21, 27 January 2006 (UTC)

[edit] Columbus Program

To the unregistered editor (67.169.1.106) who added COLUMBUS. Please register and then we can discuss your edits more directly. There are real advantages in registering. This is program that is worthy of being described in Wikipedia, but just a mention in this table is not enough. Are you going to write the page for it? I have recently added pages for JAGUAR, PQS and some others, but I do not know much about COLUMBUS and what I do will be confused by the fact that I have used some of the old COLUMBUS code from Pitzer's group. but not the current release or anything like it. Bduke 23:00, 13 January 2006 (UTC)

Good to see that User:Karol Langner has done the page. Thanks. Bduke 23:18, 15 January 2006 (UTC)

[edit] as SPR comment

Wikipedia is not only for experts on the field!

The intro is short but OK. But from than on nobody searching for a a good explenation for computational chemistry only gets the methodes which can also go into a small list at the end of the article.

Examples what computational chemistry is doing, are missing. There are a few words with no explenation in the intro giving no clue how and why you get IR-spectra or something else from a computer. For every major use there should be one section or a exapmle.

TS and IM for reactions or searching for the most stable conformer are exaples which can be shown in a small picture and everybody will get a picture what this stuff is about.

Then ther should be a description of why you do it at all. Most of the data you get from CC you can get by measurments. What are the benefits and the problems with CC. And beeing onest with problems is OK.

But for SPR this article is far more easy to comment than the aricle about science.

--Stone 07:57, 3 April 2006 (UTC)

[edit] Review

I have created the review page linked from Wikipedia:Scientific peer review and have taken the liberty of copying into the page the above review by Stone which I found a helpfull contribution. I have added a first draft of my review. Having done that, I must get back to other tasks, but when I have time, I will add this article to the normal WP:PR process and see whether anything comes of that and will edit Wikipedia:Scientific peer review to reflect the current situation. --Bduke 03:08, 7 April 2006 (UTC)

[edit] Recent edits

Karol Langner started to edit the software table by removing the pure DFT entries. I have completed this by writing Semi-empirical quantum chemistry methods (Pi electron semiempirical methods and Valence electron semiempirical methods are now included in there and are made redirects as is Semiempirical method which was a copy of part of the main article made by Itub some time ago but went nowhere) and Computational chemical methods in solid state physics. The software table now has no column for periodic systems and the codes that do this are listed in Computational chemical methods in solid state physics. The purely semi-empirical codes are deleted from the table and all are listed in Semi-empirical quantum chemistry methods. This leaves the article a bit of mess, but it will be OK when I do a similar article for ab initio methods, reorganise material and clean-up. I will get to it ASAP. --Bduke 08:05, 9 April 2006 (UTC)

This is a good movement, but aren't those names a bit long? Karol 09:03, 9 April 2006 (UTC)
Maybe. I wanted to be clear and with solid state I wanted to not overlap with any of the solid state physics articles which are nowhere near close to what we want to add the software list to. --Bduke 12:03, 9 April 2006 (UTC)

I have done more extensive work on the article and it as all roughly in the order I want. I have written Ab initio quantum chemistry methods. In the main article, in the section now headed "Interpreting molecular wave functions", I propose another sub-article. This would include not just the Bader stuff, but localised orbitals, NBO, Mulliken charges and several other similar things. I want to add several examples including the one I had in my review. The last four of this list from early in the article:-

  • The prediction of the molecular structure of molecules by the use of the simulation of forces to find stationary points on the energy hypersurface as the position of the nuclei is varied.
  • Storing and searching for data on chemical entities (see chemical databases).
  • Identifying correlations between chemical structures and properties (see QSPR and QSAR).
  • Computational approaches to help in the efficient synthesis of compounds.
  • Computational approaches to design molecules that interact in specific ways with other molecules (e.g. drug design).

all need brief sections. The section on "Chemical dynamics" needs work. The whole needs checking, sourcing and tidying, but it is getting there. --Bduke 12:03, 9 April 2006 (UTC)

Also the para near your (Karol's) image needs rewriting to explain the image. The image perhaps should also go on the ab initio article. --Bduke 12:25, 9 April 2006 (UTC)

[edit] Encyclopedia of Computational Chemistry

The "Encyclopedia of Computational Chemistry", 5 Volume Set (Hardcover), Ed. by Paul von Ragué Schleyer, is available from Amazon at US$5,375.00. It has been said that WP is not just trying to outdo Brittanica but all specialist encyclopedias. So this article is the potential portal to pages that would fill 5 volumes. Is that where we are going? The book is of course massively expensive, in part I guess because more free copies were sent to people who were asked to contribute articles than was actually sold. I have only ever seen it on shelves of people who contributed. Sadly, I'm not one of them. It would be a good place to look for ideas for articles. --Bduke 06:48, 10 April 2006 (UTC)

This is kind of off-topic, but I've seen on on the shelf of a person who bought it :) Karol 07:39, 10 April 2006 (UTC)
Still off-topic. Are you sure he did not contribute a small article. There were lots of authors and they all got a free copy. --Bduke 07:54, 10 April 2006 (UTC)

[edit] Educational Approach

In the wikipedia article named "Chemistry", the definition of Computational Chemistry is formulated by using the following statements: [..."Since the end of the Second World War, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems."...]- Going to the wikipedia page on Computational Physics, a similar idea can be read: [..."Computational Physics also englobes the tuning of the software/hardware structure to solve the problems (as the problems usually can be very large, in processing power need or in memory requests)."]- Now, then again, if we search the wikipedia article on Scientific Computation, we may find a statement related to those on that Chemistry and Computational Physics article of wikipedia. This statement goes as follows: [..."The term computational scientist is used to describe someone skilled in scientific computing. This person is usually a scientist, an engineer or an applied mathematician who applies high-performance computers in different ways to advance the state-of-the-art in their respective applied disciplines in physics, chemistry or engineering. Scientific computing has increasingly also impacted on other areas including economics, biology and medicine."...];- That same article (Scientific Computing) continues with:[..."Programming languages commonly used for the more mathematical aspects of scientific computing applications include Fortran, MATLAB, GNU Octave, Num-Python, Sci-Python and PDL. The more computationally-intensive aspects of scientific computing will often utilize some variation of C or Fortran."...] -and with : [..."Scientists and engineers develop computer programs, application software, that model systems being studied and run these programs with various sets of input parameters. Typically, these models require massive amounts of calculations (usually floating-point) and are often executed on supercomputers or distributed computing platforms."...]- On that same article (Scientific Computing) there's a part that give us info on the education that can be achieve to obtain a degree on Scientific Computing, and it tell us that:[..."There are also programs in areas such as computational physics, computational chemistry, etc."]- With all the information above in this page the message of an expert in Chemistry programs and this capacity to develop those computer programs may arise, and that is the point. I don't mean to define what is it that a Computational Chemist do,exactly, but the question remains: Do a Compuational Chemist develop a computational program for Chemistry (at least in theory, at least as capacity gained, no matter how untraditional these days that might be)?. It may sound like a stupid question, but by reading this article on Computational Chemistry I was left with the impresion that a Computational Chemist is nothing more than a chemist playing nintendo with a molecules-related videogame, without the capacity to really implement or develop a computer program or a computational knowledge high enough to make the neccesary changes if they are needed. I was planing a M.S. degree in this area of both Chemistry and Computational Sciences, but I need to know if by definition a Computational Chemist have at least some level of knowledge on computer programming and/or computer science; I know the mathematical aspect of theoretical chemistry must be regular enough before it can be implemented,and that maybe not the computational chemist job, really, but, if the mathematical approach is ready to be implement on a computer software, do the computational chemist have the knowledge or skills to do that software, or at least do some "computational chemist specific computer programming job" ? Do it depends on something? On what?. Forgive my weird questions, but I didn't know who could I ask Thank you —The preceding unsigned comment was added by 206.248.83.151 (talk) 09:50, 17 December 2006 (UTC).

This raises some interesting questions. It is rather late at night here in Australia, so I will be brief for now. I think there are two sorts of computational chemists, but with a lot of overlap. There are those who use the codes with a lot of chemical intuition to get chemical answers, and there are those who write codes. There are however many people like me who do both, but I use codes I probably could not write, and I write code that I do not sufficiently employ to get chemical answers. If you want to get into computational chemistry, then the ability to write the codes is an advantage, but you still need the ability to use them to tackle chemical problems. I hope this helps. --Bduke 11:50, 17 December 2006 (UTC)

Thank you Mr.Bduke; Please allow me to ask just a simple questions ( and this is rather a clarification, hoping you have the patience on these kind of questions- Here it is: When you wrote -[..."There are those who use the codes with a lot of chemical intuition to get chemical answers, and there are those who write codes. There are however many people like me who do both,"...]- Is the distinction beetween these two sorts of computational chemistry a clear , formal one or is it just a matter of different kinds of jobs for the same title of computational chemist?. I'm a chemistry major interested in computers and Chemistry, but with no prior computer degree, hope that explain a lot; I'm looking for an advance level of chemical knowledge, not necesarily the most advanced of them all but more than a undergraduate degree. I only want to know the neccesary about computer programming and hardware so that I use it for chemical information systems . Pratically I want to be a computational chemist, but I'm not sure what kind of preparation that would give me. I feel a personal need to cover these two areas (computer science with -at least- basic level, and, of course, Chemistry -advanced level-.Maybe you could help me. The article on computational chemistry should adress the issue of educational pathways toward Computational Chemistry degree or preparation, as well as the advantage and limitations of the discipline. It should clarify what task do computational chemist could be doing, and not just what the majority of them prefer to do or traditionaly do (it should focus on potential applications as well as common trends on the field); Thank you again. (The above was by User:206.248.83.151

Please sign you posts on talk pages with ~~~~. Sometimes those who write the codes, and of course develop the methods that the code embodies, describe themselves as theoretical chemists or quantum chemists depending on what the method is. However the term computational chemist is becoming more widespread and dominant. I get the impression that people who have entered the field in the last decade or two are generally people with a chemistry degree and a strong interest in computers. They have often learn to program on their own to write a game or similar. It helps to have a minor in mathematics and some physics too. Maybe other people would care to come in here and say what the best preparation for P/G wotk in comp chem is. I first learnt to program 46 years ago and I have not been on a programming course since, but I have learnt several other languages and have not programmed in my first language for 42 years. My degree was in chemistry with no minor. I did do a degree in maths for fun but that was well after my D Phil. --Bduke 20:57, 17 December 2006 (UTC)