Complete category

From Wikipedia, the free encyclopedia

In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : JC where J is small has a limit in C. Dually, a cocomplete category is one in which all small colimits exist.

The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other.

A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category J). Dually, a category is finitely cocomplete if all finite colimits exist.

[edit] Theorems

It follows from the existence theorem for limits that a category is complete if and only if it has equalizers (of all pairs of morphisms) and all (small) products. Since equalizers may be constructed from pullbacks and binary products, a category is complete if and only if it has pullbacks and products.

Dually, a category is cocomplete if and only if it has coequalizers and all (small) coproducts, or, equivalently, pushouts and coproducts.

Finite completeness can be characterized in several ways. For a category C, the following are all equivalent:

  • C is finitely complete,
  • C has equalizers and all finite products,
  • C has equalizers, binary products, and a terminal object,
  • C has pullbacks and a terminal object.

The dual statements are also equivalent.

A small category is complete if and only if it is cocomplete. A small complete category is necessarily thin.

[edit] Examples and counterexamples

[edit] References