CLK3 (gene)
From Wikipedia, the free encyclopedia
|
CDC-like kinase 3
|
||||||||||||||
| PDB rendering based on 2eu9. | ||||||||||||||
| Available structures: 2eu9, 2exe | ||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | CLK3; FLJ22858 | |||||||||||||
| External IDs | OMIM: 602990 MGI: 1098670 HomoloGene: 37869 | |||||||||||||
|
||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 1198 | 102414 | ||||||||||||
| Ensembl | n/a | ENSMUSG00000032316 | ||||||||||||
| Uniprot | n/a | Q3TJU0 | ||||||||||||
| Refseq | NM_001292 (mRNA) NP_001283 (protein) |
NM_007713 (mRNA) NP_031739 (protein) |
||||||||||||
| Location | n/a | Chr 9: 57.55 - 57.56 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
CDC-like kinase 3, also known as CLK3, is a human gene.[1]
CLK3 encodes a serine/threonine type protein kinase with a non-conserved N-terminal domain. A long and short isoform (phclk3 and pclk3/152) result from alternative splicing and coexist in different tissues. Isoform phclk3/152 lacks the kinase domain.[1]
[edit] References
[edit] Further reading
- Hanes J, von der Kammer H, Klaudiny J, Scheit KH (1995). "Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases.". J. Mol. Biol. 244 (5): 665-72. doi:. PMID 7990150.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171-4. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149-56. PMID 9373149.
- Duncan PI, Stojdl DF, Marius RM, et al. (1998). "The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing.". Exp. Cell Res. 241 (2): 300-8. doi:. PMID 9637771.
- Talmadge CB, Finkernagel S, Sumegi J, et al. (1998). "Chromosomal mapping of three human LAMMER protein-kinase-encoding genes.". Hum. Genet. 103 (4): 523-4. PMID 9856501.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi:. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi:. PMID 14702039.
- Hillman RT, Green RE, Brenner SE (2005). "An unappreciated role for RNA surveillance.". Genome Biol. 5 (2): R8. doi:. PMID 14759258.
- Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.". Curr. Biol. 14 (16): 1436-50. doi:. PMID 15324660.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi:. PMID 15489334.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173-8. doi:. PMID 16189514.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell 127 (3): 635-48. doi:. PMID 17081983.
- Wissing J, Jänsch L, Nimtz M, et al. (2007). "Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry.". Mol. Cell Proteomics 6 (3): 537-47. doi:. PMID 17192257.

