CLK2
From Wikipedia, the free encyclopedia
|
CDC-like kinase 2
|
||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | CLK2; MGC61500; hCLK2 | |||||||||||||
| External IDs | OMIM: 602989 MGI: 1098669 HomoloGene: 33303 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 1196 | 12748 | ||||||||||||
| Ensembl | ENSG00000176444 | ENSMUSG00000068917 | ||||||||||||
| Uniprot | P49760 | Q3UFP4 | ||||||||||||
| Refseq | XM_001128256 (mRNA) XP_001128256 (protein) |
NM_007712 (mRNA) NP_031738 (protein) |
||||||||||||
| Location | Chr 1: 153.5 - 153.51 Mb | Chr 3: 89.25 - 89.26 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
CDC-like kinase 2, also known as CLK2, is a human gene.[1]
This gene encodes a member of the CLK family of dual specificity protein kinases. CLK family members have shown to interact with, and phosphorylate, serine- and arginine-rich (SR) proteins of the spliceosomal complex, which is a part of the regulatory mechanism that enables the SR proteins to control RNA splicing. This protein kinase is involved in the regulation of several cellular processes and may serve as a link between cell cycle progression, apoptosis, and telomere length regulation.[1]
[edit] References
[edit] Further reading
- Hanes J, von der Kammer H, Klaudiny J, Scheit KH (1995). "Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases.". J. Mol. Biol. 244 (5): 665-72. doi:. PMID 7990150.
- Lee K, Du C, Horn M, Rabinow L (1996). "Activity and autophosphorylation of LAMMER protein kinases.". J. Biol. Chem. 271 (44): 27299-303. PMID 8910305.
- Winfield SL, Tayebi N, Martin BM, et al. (1997). "Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease.". Genome Res. 7 (10): 1020-6. PMID 9331372.
- Duncan PI, Stojdl DF, Marius RM, et al. (1998). "The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing.". Exp. Cell Res. 241 (2): 300-8. doi:. PMID 9637771.
- Tsujikawa M, Kurahashi H, Tanaka T, et al. (1998). "Homozygosity mapping of a gene responsible for gelatinous drop-like corneal dystrophy to chromosome 1p.". Am. J. Hum. Genet. 63 (4): 1073-7. PMID 9758629.
- Nayler O, Schnorrer F, Stamm S, Ullrich A (1999). "The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation.". J. Biol. Chem. 273 (51): 34341-8. PMID 9852100.
- Talmadge CB, Finkernagel S, Sumegi J, et al. (1998). "Chromosomal mapping of three human LAMMER protein-kinase-encoding genes.". Hum. Genet. 103 (4): 523-4. PMID 9856501.
- Moeslein FM, Myers MP, Landreth GE (1999). "The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B.". J. Biol. Chem. 274 (38): 26697-704. PMID 10480872.
- Nothwang HG, Kim HG, Aoki J, et al. (2001). "Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain.". Hum. Mol. Genet. 10 (8): 797-806. PMID 11285245.
- Ravichandran LV, Chen H, Li Y, Quon MJ (2002). "Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor.". Mol. Endocrinol. 15 (10): 1768-80. PMID 11579209.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi:. PMID 12477932.
- Jiang N, Bénard CY, Kébir H, et al. (2003). "Human CLK2 links cell cycle progression, apoptosis, and telomere length regulation.". J. Biol. Chem. 278 (24): 21678-84. doi:. PMID 12670948.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi:. PMID 14702039.
- Hillman RT, Green RE, Brenner SE (2005). "An unappreciated role for RNA surveillance.". Genome Biol. 5 (2): R8. doi:. PMID 14759258.
- Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.". Curr. Biol. 14 (16): 1436-50. doi:. PMID 15324660.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi:. PMID 15489334.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173-8. doi:. PMID 16189514.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55-65. doi:. PMID 16344560.
- Collis SJ, Barber LJ, Clark AJ, et al. (2007). "HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability.". Nat. Cell Biol. 9 (4): 391-401. doi:. PMID 17384638.

