User:Chriskl

From Wikipedia, the free encyclopedia

Anyone who looks at my page, just ignore this stuff, it's just a handy way of mailing people maths formulas :)

Contents

[edit] 1234

[edit] mine

2^{3^{(4+1)}} = 2^{243} = 14134776518227074636666380005943348126619871175004951664972849610340958208

[edit] yours

4^{3^{(2+1)}} = 4^{27} = 18014398509481984

[edit] Other Stuff - Ignore

y = \gamma+\sin\gamma\cos\gamma+\frac{4}{3}(1-\cos^3\gamma)

x = sinφ


The closest 3rd degree polynomial that can resemble the above expression between 0 and  \frac{\pi}{2} is:


 y_2 = 2 ( \gamma+ \gamma^2 - \frac{2}{3}\gamma^3 )


The inverse function for this interval is:

γ = {q + [q2 + (rp2)3]1 / 2}1 / 3 + {q − [q2 + (rp2)3]1 / 2}1 / 3 + p}


where

 p = \frac{1}{2} ,

 q = \frac{1}{8}+1+y_2 , and

 r = -\frac{1}{2} ,