CDC42EP4
From Wikipedia, the free encyclopedia
|
CDC42 effector protein (Rho GTPase binding) 4
|
||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | CDC42EP4; CEP4; BORG4; KAIA1777; MGC17125; MGC3740 | |||||||||||||
| External IDs | OMIM: 605468 MGI: 1929760 HomoloGene: 8110 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 23580 | 56699 | ||||||||||||
| Ensembl | ENSG00000179604 | ENSMUSG00000041598 | ||||||||||||
| Uniprot | Q9H3Q1 | Q3TH99 | ||||||||||||
| Refseq | NM_012121 (mRNA) NP_036253 (protein) |
NM_020006 (mRNA) NP_064390 (protein) |
||||||||||||
| Location | Chr 17: 68.79 - 68.82 Mb | Chr 11: 113.54 - 113.57 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
CDC42 effector protein (Rho GTPase binding) 4, also known as CDC42EP4, is a human gene.[1]
The product of this gene is a member of the CDC42-binding protein family. Members of this family interact with Rho family GTPases and regulate the organization of the actin cytoskeleton. This protein has been shown to bind both CDC42 and TC10 GTPases in a GTP-dependent manner. When overexpressed in fibroblasts, this protein was able to induce pseudopodia formation, which suggested a role in inducing actin filament assembly and cell shape control.[1]
[edit] References
[edit] Further reading
- Joberty G, Perlungher RR, Macara IG (2000). "The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins.". Mol. Cell. Biol. 19 (10): 6585–97. PMID 10490598.
- Hirsch DS, Pirone DM, Burbelo PD (2001). "A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes.". J. Biol. Chem. 276 (2): 875–83. doi:. PMID 11035016.
- Osada N, Kusuda J, Suzuki Y, et al. (2001). "Sequence analysis, gene expression, and chromosomal assignment of mouse Borg4 gene and its human orthologue.". J. Hum. Genet. 45 (6): 374–7. PMID 11185749.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:. PMID 14702039.
- Blackshaw S, Harpavat S, Trimarchi J, et al. (2006). "Genomic analysis of mouse retinal development.". PLoS Biol. 2 (9): E247. doi:. PMID 15226823.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:. PMID 15489334.
- Barrios-Rodiles M, Brown KR, Ozdamar B, et al. (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells.". Science 307 (5715): 1621–5. doi:. PMID 15761153.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:. PMID 16189514.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell 127 (3): 635–48. doi:. PMID 17081983.

