User:Cavenba/Mathtastic

From Wikipedia, the free encyclopedia

This is a Wikipedia user page.

This is not an encyclopedia article. If you find this page on any site other than Wikipedia, you are viewing a mirror site. Be aware that the page may be outdated and that the user to whom this page belongs may have no personal affiliation with any site other than Wikipedia itself. The original page is located at http://en.wikipedia.org/wiki/User:Cavenba/Mathtastic.


\pi = 3.141592653589793238462643383279502884197169399375105820974944592307\,\!


Contents

[edit] Trigonometric functions

\sin \theta = \frac {\textrm{opposite}} {\textrm{hypotenuse}} = \frac {o} {h}

\cos \theta = \frac {\textrm{adjacent}} {\textrm{hypotenuse}} = \frac {a} {h}

\tan \theta = \frac {\textrm{opposite}} {\textrm{adjacent}} = \frac {o} {a}

[edit] Tips

 \mbox{Remember: SOHCAHTOA}\,\!

 \sin \theta = o/h \mbox{ or SOH}\,\!

 \cos \theta = a/h \mbox{ or CAH}\,\!

 \tan \theta = o/a \mbox{ or TOA}\,\!

[edit] Trigonometric equations

[edit] Example

\mbox{If } \sin x = \frac {\sqrt {3}} {2} \mbox{then } x =  
\begin{cases} 
  60^\circ + 360^\circ k, k \in \mathbb{I} \\
  120^\circ + 360^\circ k, k \in \mathbb{I} 
\end{cases}

[edit] Trigonometric identities

See also: List of trigonometric identities
The unit circle can be very helpful
The unit circle can be very helpful

[edit] Reciprocal

1. \csc \theta = \frac {1} {\sin \theta}

2. \sec \theta = \frac {1} {\cos \theta}

3. \cot \theta = \frac {1} {\tan \theta}

[edit] Quotient

4. \tan \theta = \frac {\sin \theta} {\cos \theta}

5. \cot \theta = \frac {\cos \theta} {\sin \theta}

[edit] Pythagorean

6. \sin^2 \theta + \cos^2 \theta = 1\,\!

7. \tan^2 \theta + 1 = \sec^2 \theta\,\!

8. 1 + \cot^2 \theta = \csc^2 \theta\,\!

[edit] Example

\mbox{Prove. } \sec x + \frac {1} {\cot x} = \frac {1 + \sin x} {\cos x}

\left ( \frac {1} {\cos x} \right ) + \left ( \frac {\sin x} {\cos x} \right ) = \frac {1 + \sin x} {\cos x}

 \frac {1 + \sin x} {\cos x} = \frac {1 + \sin x} {\cos x}

[edit] Radians

An angle of 1 radian subtends an arc equal in length to the radius of the circle.
An angle of 1 radian subtends an arc equal in length to the radius of the circle.
See also: Radian

The radian is a unit of plane angle, equal to 180/π degrees, or about 57.296 degrees. It is the standard unit of angular measurement in all areas of mathematics beyond the elementary level.

[edit] Important equations

\mbox{Arc Length} = 2 \pi r \left (\frac {\theta} {360^\circ} \right )
1 \mbox{ complete circle} = 360^\circ \left (\frac {1 \mbox{ rad}} {57.296^\circ} \right ) = 2\pi

[edit] Degrees → Radians

30^\circ \left (\frac {\pi} {180^\circ} \right) = \frac {30 \pi} {180} = \frac {\pi} {6} \mbox{ rad}

[edit] Radians → Degrees

\frac {3 \pi} {4} \left (\frac {180^\circ} {\pi} \right ) = 135^\circ