Brunn-Minkowski theorem
From Wikipedia, the free encyclopedia
In mathematics, the Brunn-Minkowski theorem (or Brunn-Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn-Minkowski theorem (H. Brunn 1887; H. Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to L.A. Lyusternik (1935).
Contents |
[edit] Statement of the theorem
Let n ≥ 1 and let μ denote Lebesgue measure on Rn. Let A and B be two compact subsets of Rn. Then the following inequality holds:
where A + B denotes the Minkowski sum:
[edit] Remarks
The proof of the Brunn-Minkowski theorem establishes that the function
is concave. Thus, for every pair of compact subsets A and B of Rn and every 0 ≤ t ≤ 1,
One can even show that the function is strictly concave. This implies that the inequality in the theorem is strict unless A and B are homothetic, i.e. are equal up to translation and dilation.
[edit] See also
- Isoperimetric inequality
- Milman's reverse Brunn-Minkowski inequality
- Minkowski-Steiner formula
- Prékopa-Leindler inequality
- Vitale's random Brunn-Minkowski inequality
[edit] References
- Brunn, H. (1887). "Über Ovale und Eiflächen". Inaugural Dissertation, München.
- Dacorogna, Bernard (2004). Introduction to the Calculus of Variations. London: Imperial College Press. ISBN 1-86094-508-2.
- Lyusternik, Lazar A. (1935). "Die Brunn-Minkowskische Ungleichnung für beliebige messbare Mengen". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS (Nouvelle Série) III: 55–58.
- Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner.
![[ \mu (A + B) ]^{1/n} \geq [\mu (A)]^{1/n} + [\mu (B)]^{1/n},](../../../../math/e/5/4/e54d431eaf9d83cb831971f69e87fe7e.png)

![A \mapsto [\mu (A)]^{1/n}](../../../../math/b/2/a/b2a591258fcfa857e9ee823c04e0832d.png)
![\left[ \mu (t A + (1 - t) B ) \right]^{1/n} \geq t [ \mu (A) ]^{1/n} + (1 - t) [ \mu (B) ]^{1/n}.](../../../../math/9/e/a/9ea5158ba3129883268349babcf52cd2.png)

