Breather surface

From Wikipedia, the free encyclopedia

Breather surface when
Breather surface when a=\frac{2}{5}\text{ and }-14\le u<14\text{ and }-37.4\le v<37.4

In differential equations, a breather surface is a mathematical surface relating to breathers.

[edit] Parametrization

\begin{align}
x & {} = \frac{2\left(1-a^2\right)\cosh(au)\sinh(au)}{a\left(\sqrt{1-a^2}\cosh^2(au)+\left(a\,\sin^2\left(\sqrt{1-a^2}v\right)\right)\right)}-u \\  \\
y & {} = \frac{2\sqrt{1-a^2}\cosh(u)\left(-\sqrt{1-a^2}\cos(v)\cos\left(\sqrt{1-a^2}v\right)-\sin(v)\sin\left(\sqrt{1-a^2}v\right)\right)}{a\left(\sqrt{1-a^2}\cosh^2(au)+\left(a\,\sin^2\left(\sqrt{1-a^2}v\right)\right)\right)} \\  \\
z & {} = \frac{2\sqrt{1-a^2}\cosh(au)\left(-\sqrt{1-a^2}\sin(v)\cos\left(\sqrt{1-a^2}v\right)+\cos(v)\sin\left(\sqrt{1-a^2}v\right)\right)}{a\left(\sqrt{1-a^2}\cosh^2(au)+\left(a\,\sin^2\left(\sqrt{1-a^2}v\right)\right)\right)}
\end{align}

where 0 < a < 1.

[edit] See also

[edit] References

This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.