Image:Biholomorphism illustration.svg

From Wikipedia, the free encyclopedia

Biholomorphism_illustration.svg (SVG file, nominally 4709 × 8557 pixels, file size: 43 KB)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Illustration of a biholomorphism.

Source

self-made with MATLAB, tweaked in Inkscape.

Date

06:40, 31 January 2008 (UTC)

Author

Oleg Alexandrov

Permission
(Reusing this image)

See below



Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] Source code (MATLAB)

% Illustration of a biholomorphim, in this case w=exp(z)
 
function main()
 
   N = 11; % num of grid points
   epsilon = 0.1; % displacement for each small diffeomorphism
   num_comp = 10; % number of times the diffeomorphism is composed with itself
 
   Sx = linspace(-1, 1, N);
   Sy = linspace(0, pi/2, N);
 
   [X, Y] = meshgrid(Sx, Sy);
 
   % graphing settings
   lw = 3.5;
 
   % KSmrq's colors
   blue   = [0, 129, 205]/256;
   green  = [0, 200,  70]/256;
   yellow = [254, 194,   0]/256;
   white = 0.99*[1, 1, 1];
 
   mycolor = blue;
 
   % start plotting
   figno=1; figure(figno); clf;
 
   mode = 1;
   do_plot(X, Y, lw, figno, mycolor, mode)
   saveas(gcf, 'Biholom1.eps', 'psc2');
   plot2svg('Biholom1.svg');
 
   I=sqrt(-1);
   Z = X+I*Y;
 
   F=exp(Z);
 
   XF = real(F); YF=imag(F);
 
   figno = 2;
   mode = 2;
   do_plot(XF, YF, lw, figno, mycolor, mode)
 
   saveas(gcf, 'Biholom2.eps', 'psc2');
   plot2svg('Biholom2.svg');
 
 
function do_plot(X, Y, lw, figno, mycolor, mode)
   figure(figno); clf; hold on;
   axis equal; axis off;
 
   minX = min(min(X)); maxX = max(max(X));
   minY = min(min(Y)); maxY = max(max(Y));
 
   small = 0.2;
   if mode == 1
 
   else
      small = 0.5*exp(1)*small;
   end
   A=minX-small/2; B=maxX+small;
   C=minY-small/2; D=maxY+small;
%   plot([A B], [0, 0], 'linewidth', lw, 'color', black);
%   plot([0, 0], [C, D], 'linewidth', lw, 'color', black);
 
   [M, N] = size(X);
 
   for i=1:N
      plot(X(:, i), Y(:, i), 'linewidth', lw, 'color', mycolor);
      plot(X(i, :), Y(i, :), 'linewidth', lw, 'color', mycolor);
   end
 
   red    = [0.867 0.06 0.14];
   gray = 0.2*[1, 1, 1];
 
   arrow_size = 0.07*max(maxX, maxY);
   sharpness = 20;
   arrow_type = 1; 
   tiny = 0.01;
   scale_lw = 0.8;
 
   arrow([A, 0], [B, 0], scale_lw*lw, arrow_size, sharpness, arrow_type, gray);
   arrow([0, C], [0, D], scale_lw*lw, arrow_size, sharpness, arrow_type, gray);
 
 
   fs = 10*max(maxX, maxY);
   myrad = 0.009*max(maxX, maxY);
 
 
   % in the two pictures, the text to be displayed is different
   if mode == 1
 
      smallx = -0.03*max(B, D);
      smally = -0.12*max(B, D);
 
      text (minX+smallx, smally, sprintf('%d', minX), 'fontsize', fs, 'color', gray);
      text (maxX+smallx, smally, sprintf('%d', maxX), 'fontsize', fs, 'color', gray);
 
%      ball(minX, 0, myrad, mycolor);
%      ball(maxX, 0, myrad, mycolor);
%      ball(0, maxY, myrad, mycolor);
 
   else
      smallx = -0.01*max(B, D);
      smally = -0.12*max(B, D);
 
      text (minX+smallx, smally, 'e^{-1}', 'fontsize', fs, 'color', gray);
      text (maxX+smallx, smally, 'e', 'fontsize', fs, 'color', gray);
 
%      ball(exp(-1), 0, myrad, mycolor); ball(exp(1), 0, myrad, mycolor);
%      ball(0, exp(-1), myrad, mycolor); ball(0, exp(1), myrad, mycolor);
 
   end
 
function ball(x, y, radius, color) % draw a ball of given uniform color 
   Theta=0:0.1:2*pi;
   X=radius*cos(Theta)+x;
   Y=radius*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);
 
 
function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color)
 
% Function arguments:
% start, stop:  start and end coordinates of arrow, vectors of size 2
% thickness:    thickness of arrow stick
% arrow_size:   the size of the two sides of the angle in this picture ->
% sharpness:    angle between the arrow stick and arrow side, in degrees
% arrow_type:   1 for filled arrow, otherwise the arrow will be just two segments
% color:        arrow color, a vector of length three with values in [0, 1]
 
% convert to complex numbers
   i=sqrt(-1);
   start=start(1)+i*start(2); stop=stop(1)+i*stop(2);
   rotate_angle=exp(i*pi*sharpness/180);
 
% points making up the arrow tip (besides the "stop" point)
   point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start);
   point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start);
 
   if arrow_type==1 % filled arrow
 
      % plot the stick, but not till the end, looks bad
      t=0.5*arrow_size*cos(pi*sharpness/180)/abs(stop-start); stop1=t*start+(1-t)*stop;
      plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color);
 
      % fill the arrow
      H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color);
      set(H, 'EdgeColor', 'none')
 
   else % two-segment arrow
      plot(real([start, stop]), imag([start, stop]),   'LineWidth', thickness, 'Color', color); 
      plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color);
      plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color);
   end

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current07:02, 31 January 20084,709×8,557 (43 KB)Oleg Alexandrov (Still tweaking text position)
06:49, 31 January 20084,709×8,557 (42 KB)Oleg Alexandrov
06:49, 31 January 20084,709×8,557 (42 KB)Oleg Alexandrov
06:47, 31 January 20084,709×8,557 (42 KB)Oleg Alexandrov
06:45, 31 January 20084,709×8,557 (42 KB)Oleg Alexandrov
06:40, 31 January 20084,617×8,557 (41 KB)Oleg Alexandrov ({{Information |Description=Illustration of a biholomorphism. |Source=self-made with MATLAB, tweaked in Inkscape. |Date=~~~~~ |Author= Oleg Alexandrov |Permission=See below |other_versions= }} {{PD-self}} =)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):