User:BalazsH/C4 Formulae

From Wikipedia, the free encyclopedia

A list of formulae that were introduced in the C4 module of the Mathematics OCR (MEI) course that may need to be used in the exam.

Contents

[edit] Not Given in Exam

[edit] Trigonometry

\sec^2x \equiv 1 + \tan^2x \,

\csc^2x \equiv 1 + \cot ^2x \,

\sin2x \equiv 2\sin x\cos x \,

\cos2x \equiv \cos^2x - \sin^2x \equiv 1 - 2\sin^2x \equiv 2\cos^2x - 1 \,

\tan2x \equiv \frac{2\tan x}{1-\tan^2x} \,

\sin^2x \equiv \frac{1}{2}(1 - \cos 2x)

\cos^2x \equiv \frac{1}{2}(1 + \cos 2x)

[edit] Small Angle Approximations

\lim_{x \to 0}\frac{x}{\sin x} = \lim_{x \to 0}\frac{\sin x}{x} = 1 \,

\sin x \approx x \,

\tan x \approx x \,

\cos x \approx 1 - \frac{x^2}{2} \,

[edit] Differentiation

\sin kx \Rightarrow  k\cos kx \,

\cos kx \Rightarrow -k\sin kx \,

e^{kx} \Rightarrow ke^{kx} \,

[edit] Integration

\cos kx \Rightarrow \frac{1}{k}\sin kx + c \,

\sin kx \Rightarrow -\frac{1}{k}\cos kx + c \,

[edit] Vectors

\begin{bmatrix}
 x\\
 y\\
 z\\
\end{bmatrix}
\bullet
\begin{bmatrix}
 a\\
 b\\
 c\\
\end{bmatrix}
= xa + yb + zc

[edit] Parametric Equations

  • Circle centre (0,0) and radius r: x = r\cos\theta \, and y = r\sin\theta \,
  • Circle centre (a,b) and radius r: x = a + r\cos\theta \, and y = b + r\sin\theta \,
  • \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \, provided that \frac{dx}{dt} \neq 0 \,
  • Ellipse centre (0,0) with major axis 2a and minor axis 2b: x = a\cos\theta \, and y = b\sin\theta \,
  • Parabola with line of symmetry the x-axis: x = at^2 \, and y = 2at \,
  • Rectangular hyperbola xy = c^2: x = ct \, and y = \frac{c}{t} \,

[edit] Algebra

\frac{px + q}{(ax + b)(cx + d)} \equiv \frac{A}{ax + b} + \frac{B}{cx + d} \,

\frac{px^2 + qr + r}{(ax + b)(cx^2 + d)} \equiv \frac{A}{ax + b} + \frac{Bx + C}{cx^2 + d} \,

\frac{px^2 + qx + r}{(ax + b)(cx + d)} \equiv \frac{A}{ax + b} + \frac{B}{cx + d} + \frac{C}{(cx + d)^2} \,

[edit] Given in Exam Booklet

[edit] Trigonometry

\sin(\theta \pm \phi) = \sin \theta \cos \phi \pm \cos \theta \sin \phi \,

\cos(\theta \pm \phi) = \cos \theta \cos \phi \mp \sin \theta \sin \phi\,

\tan(\theta \pm \phi) = \frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi}

\sin\alpha \pm \sin\beta = 2\sin\left(\frac{\alpha \pm \beta}{2}\right)\cos\left(\frac{\alpha \mp \beta}{2}\right)

\cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)

\cos\alpha - \cos\beta = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)

[edit] Integration

[edit] Trapezium Rule

A = \frac{h}{2} \bigg[y_0 + y_n+ 2(y_1 + y_2 + ... + y_{n-1}) \bigg] \, Where h = \frac{b - a}{n} \,

[edit] Volumes of revolution

  • About the x-axis: V = \pi\int_{a}^{b}y^2 dx \,

  • About the y-axis  V = \pi\int_{a}^{b}x^2 dy \,