Portal:Atlas/Selected article

From Wikipedia, the free encyclopedia

Jump to the nominations

edit  

Selected article

Portal:Atlas/Selected article/1

Cartography or mapmaking is the study and practice of making representations of the Earth on a flat surface. The discipline of cartography combines science, aesthetics, and technical ability to create a balanced and readable representation that is capable of communicating information effectively and quickly. Cartographic representation involves the use of symbols and lines to illustrate geographic phenomena. This can aid in visualizing space in an abstract and portable format.

Functioning as tools, maps communicate spatial information by making it visible. Spatial information is acquired from measurement of space and can be stored in a database, from which it can be extracted for a variety of purposes. Current trends in this field are moving away from analog methods of mapmaking and toward the creation of increasingly dynamic, interactive maps that can be manipulated digitally.



Portal:Atlas/Selected article/2

A geographic information system (GIS) is a system for capturing, storing, analyzing and managing data and associated attributes which are spatially referenced to the earth. In the strictest sense, it is a computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information. In a more generic sense, GIS is a tool that allows users to create interactive queries, analyze the spatial information, edit data, maps, and present the results of all these operations. Geographic information science is the science underlying the geographic concepts, applications and systems.

Geographic information system technology can be used for scientific investigations, resource management, asset management, Environmental Impact Assessment, Urban planning, cartography, criminology, history, sales, marketing, and logistics.



Portal:Atlas/Selected article/3

A map projection is any method used in cartography to represent the two-dimensional curved surface of the earth or other body on a plane. The term "projection" here refers to any function defined on the earth's surface and with values on the plane, and not necessarily a geometric projection.

Flat maps could not exist without map projections, because a sphere cannot be laid flat over a plane without distortions. One can see this mathematically as a consequence of Gauss's Theorema Egregium. Flat maps can be more useful than globes in many situations: they are more compact and easier to store; they readily accommodate an enormous range of scales; they are viewed easily on computer displays; they can facilitate measuring properties of the terrain being mapped; they can show larger portions of the earth's surface at once; and they are cheaper to produce and transport. These useful traits of flat maps motivate the development of map projections.



Portal:Atlas/Selected article/4

Topography is the study of Earth's surface features or those of planets, moons, and asteroids. In a broader sense, topography is concerned with local detail in general, including not only relief but also vegetative and human-made features, and even local history and culture. This meaning is less common in America, where topographic maps with elevation contours have made "topography" synonymous with relief. The older sense of Topography as the study of place still has currency in Europe.

For the purposes of this article, topography specifically involves the recording of relief or terrain, the three-dimensional quality of the surface, and the identification of specific landforms. This is also known as geomorphometry. In modern usage, this involves generation of elevation data in electronic form. It is often considered to include the graphic representation of the landform on a map by a variety of techniques, including contour lines, Hypsometric tints, and relief shading.



Portal:Atlas/Selected article/5

Mappa mundi is a general term used to describe Medieval European maps of the world. These maps ranged in size and complexity from simple schematic maps an inch or less across, to elaborate wall maps, the largest of which was 11 ft. (3.5 m.) in diameter. The term derives from the Medieval Latin words mappa (cloth or chart) and mundi (of the world). Approximately 1,100 mappae mundi are known to have survived from the Middle Ages. Of these, some 900 are found illustrating manuscripts and the remainder exist as stand-alone documents.

To modern eyes, mappae mundi can look superficially primitive and inaccurate. However, mappae mundi were never meant to be used as navigational charts and they make no pretense of showing land and water proportionately. Rather, mappae mundi were schematic and were meant to illustrate different principles. The simplest mappae mundi were diagrams meant to preserve and illustrate classical learning easily.



Portal:Atlas/Selected article/6

A virtual globe is a 3D software model or representation of the Earth or another world. A virtual globe provides the user with the ability to freely move around in the virtual environment by changing the viewing angle and position. Compared to a conventional globe, virtual globes have the additional capability of representing many different views on the surface of the Earth. These views may be of geographical features, man-made features such as roads and buildings or abstract representations of demographic quantities such as population. The first widely publicized virtual globe was Google Earth.

Virtual globes may be used for study or navigation (by connecting to a GPS device) and their design varies considerably according to their purpose. Those wishing to portray a visually accurate representation of the Earth often use satellite image servers and are capable not only of rotation but also zooming and sometimes horizon tilting.

                                      [for more informations see http://mc-site.weebly.com]
------------------------------------------------------



Portal:Atlas/Selected article/7

The Geographia is Ptolemy's main work besides the Almagest. It is a compilation of what was known about the world's geography in the Roman Empire of the 2nd century. Ptolemy relied mainly on the work of an earlier geographer, Marinos of Tyre, and on gazetteers of the Roman and ancient Persian empire, but most of his sources beyond the perimeter of the Empire were unreliable.

Ptolemy also devised and provided instructions on how to create maps both of the whole inhabited world (oikoumenè) and of the Roman provinces. In the second part of the Geographia he provided the necessary topographic lists, and captions for the maps. His oikoumenè spanned 180 degrees of longitude from the Canary islands in the Atlantic Ocean to China, and about 80 degrees of latitude from the Arctic to the East Indies and deep into Africa; Ptolemy was well aware that he knew about only a quarter of the globe.



Portal:Atlas/Selected article/8

The Mercator projection is a cylindrical map projection presented by the Flemish geographer and cartographer Gerardus Mercator, in 1569. It became the standard map projection for nautical purposes because of its ability to represent lines of constant true bearing or true course, known as rhumb lines, as straight line segments. Mercator's 1569 edition was a large planisphere measuring 202 by 124 cm, printed in eighteen separate sheets.

Like all map projections that attempt to fit a curved surface onto a flat sheet, the shape of the map is a distortion of the true layout of the Earth's surface. The Mercator projection exaggerates the size of areas far from the equator.



Portal:Atlas/Selected article/9
Portal:Atlas/Selected article/9



Portal:Atlas/Selected article/10
Portal:Atlas/Selected article/10



Suggestions

Is there a Map or Atlas-related article good enough? Please post you suggestions below to let your voice be heard.

Procedure

The nomination process here is relaxed, but articles that meet the featured article or good article requirements are more likely to gain support.

Nominating articles

  1. Find an article related to atlases that you think is very good. It need not be a current Featured Article or Good article, but if it is, it could only help the nomination.
    • If the article was previously nominated for featured status, or if it has been on peer review, try to resolve as many of the remaining objections as possible.
  2. In the nominations section below, add a third level section header with the linked page title as the section name (===[[Page title]]===). Below this new header, add your reasons for nomination and sign your nomination with ~~~~.

Supporting and objecting

  • If you approve of an article, write "Support" followed by your reasons.
    • A nomination is considered a vote in support, so nominators don't need to add another vote to their nominations.
  • If you oppose a nomination, write "Oppose" followed by the reasons for your objection. Where possible, objections should provide a specific rationale that can be addressed.
    • To withdraw an objection, strike it out (with <s>...</s>) rather than removing it.

Nominations