Advanced superionic conductor
From Wikipedia, the free encyclopedia
| The introduction to this article provides insufficient context for those unfamiliar with the subject. Please help improve the article with a good introductory style. |
The term of advanced superionic conductors (AdSIC) was first introduced in the paper by A.L.Despotuli, A.V.Andreeva and B.Rambaby[1].
AdSICs are fast ion conductors that have a crystal structure close to optimal for fast ion transport (FIT). The rigid ion sublattice of AdSIC has structure channels where mobile ions of opposite sign migrate. The ion-transport characteristics of AdSICs are very high, ionic conductivity, ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).
Rubidium silver iodide –family is a group of the AdSICs compounds and solid solutions which are isostructural with the RbAg4I5 alpha modification. The examples of such compounds with mobile Ag+- and Cu+-cations are: KAg4I5, NH4Ag4I5, K1-xCsxAg4I5, Rb1-xCsxAg4I5, CsAg4Br1-xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2, KCu4I5 and others [3-7].
Recently, all solid state micron-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[2]
[edit] References
- ^ Despotuli, Andreeva and Rambaby (Wednesday, June 07, 2006). "Nanoionics of advanced superionic conductors" (portable document format abstract only). Ionics 11 (3-4): 306–314. Berlin/Heidelberg: Springer. doi:. ISSN (Print) 1862-0760 (Online) 0947-7047 (Print) 1862-0760 (Online).
- ^ Александр Деспотули, Александра Андреева (2007). "Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего" (in Russian) (Portable Document Format). СОВРЕМЕННАЯ ЭЛЕКТРОНИКА (7): 24–29. Alexander Despotuli, Alexandra Andreeva (2007). "High-capacity capacitors for 0.5 voltage nanoelectronics of the future" (Portable Document Format). Modern Electronics (7): 24–29.
[3] Geller S. Crystal Structure of the Solid Electrolyte, RbAg4I5 // Science 1967. V. 157. no. 3786. P. 310 – 312.
[4] Geller S., Akridge J.R., Wilber S.A. Crystal structure and conductivity of the solid electrolyte α-RbCu4Cl3I2 // Phys. Rev. B 1979. V.19. P. 5396 – 5402.
[5] Hull S. Keen D.A., Sivia D.S., Berastegui P. Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides - I. Superionic Phases of Stoichiometry MAg4I5: RbAg4I5, KAg4I5, and KCu4I5 // J.Solid State Chemistry 2002. V. 165. P. 363-371.
[6] Despotuli A.L., Zagorodnev V.N., Lichkova N.V., Minenkova N.A. New high conductive CsAg4Br1-xI2+x (0.25 < x <1) solid electrolytes // Sov. Phys. Solid State 1989. V.31. P. 242-244.
[7] Lichkova N.V., Despotuli A.L., Zagorodnev V.N., Minenkova N.A., Shahlevich K.V. Ionic conductivity of solid electrolytes in the two- and three-components AgX –CsX (X = Cl, Br, I) glass-forming systems // Sov. Electrochem. 1989. V.25. P.1636-1640.

