User:AchatesAVC/math

From Wikipedia, the free encyclopedia


\sqrt{-1}=i

Er...what's up with this:


\int \frac{du}{\sqrt{a^2 -u^2}} = \sinh ^{-1} \frac{u}{a} + C

Now we assume that  \sinh ^{-1} \frac{u}{a} is undefined for a = 0 But if we take a = 0 in the integral, we get the following:


\int \frac{du}{\sqrt{-u^2}} = \int \frac{du}{ui} = i \int \frac{du}{u}

Then integrating.


i \int \frac{du}{u} = i \ln u + C

Now does this mean that:


\sinh ^{-1} \frac{u}{0} + C_0 = \sinh ^{-1} \infty + C_0 = i \ln u + C_1

If so, that is strange...


 {dy \over dx} = \lim _{\Delta x \to \infty} {{f(x+\Delta x)-f(x)} \over \Delta x}


\ln x = \int _{1} ^{x} {1 \over u} du = \lim _{h \to 0} {{x^h - 1} \over h}

ei + 1 = 0

ei = cosθ + isinθ


\mathfrak{z} ^n _k  = \sqrt[n] |{\mathfrak{z}}|(\cos {{\theta + {2 \pi k}} \over n} + i \sin {{\theta + {2 \pi k}} \over n})

Special Case: 
{1 \over a} - {1 \over {a+1} } = {1 \over {a(a+1)} }

General Case: 
{n \over a} - {n \over b} = {{n(b-a)} \over ab}



{ {d(e^u)} \over dx} = e^u {du \over dx}

For initial acceleration, velocity, and displacement:
a_0,\ v_0,\ s_0


\frac{d^3 s}{dt^3} = j


a = \frac{d^2 s}{dt^2} = \int j\ dt= jt + a_0


v = \frac{ds}{dt} = \int a\ dt = \int (jt + a_0)dt = \frac{1}{2} jt^2 + a_0 t + v_0


s =\int v\ dt= \int (\frac{1}{2} jt^2 + a_0t + v_0)\ dt = \frac{1}{6}jt^3 + \frac{1}{2}a_0 t^2 +v_0 t + s_0


X_1 = X_2 - \frac{dm_2}{m_1+m_2}


\mathcal{F}_g = \frac{\mathcal{G} m_1 m_2}{|r|^2}\ \frac{|r|}{\mathbf{r}}


X_{(1,2)} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Cauchy-Riemann:



\frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0)


\frac{\partial v}{\partial x}(x_0,y_0)= - \frac{\partial u}{\partial y}(x_0,y_0)

 \operatorname{If}\ r<1:


a_\infty = \sum ^\infty _1 ar^{n-1} = \frac{a}{1-r}


P(X,N) = \bigg( \begin{matrix} N \\ X \end{matrix} \bigg) p^x (1-p)^{n-x}

P(X = N) = pN − 1(1 − p)


\frac{1}{P} = \frac{1}{n-1} \bigg( {\frac{1}{R_1} + \frac{1}{R_2}} \bigg)


\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}

\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} dt.


\operatorname{NormalCDF} (X, \mu, \sigma) = \frac{1}{2} \bigg( 1 + \frac{2}{\sqrt{\pi}} \int _0 ^{\frac{x-\mu}{\sigma \sqrt{2}}} e^{-t^2} dt \bigg)


Random Integrals:

 \int x \sin x dx

 u=x\quad du=dx\quad dv=\sin x\quad v=-\cos x

 uv - \int v du= -x\cos x +\sin x

 \int \frac{3}{x \ln(x)}\ dx= 3\ln|\ln(x)|


\int \frac{1}{x^2-4}\ dx\ =\ \frac{1}{4}\ln\bigg|\frac{\ln|x-2|}{\ln|x+2|}\bigg| + C

i2 = − 1

P = I2R


\operatorname{cis} (\theta) = \cos (\theta) + i\sin (\theta)


re^{i\theta}=|r|\operatorname{cis}(\theta)


|\mathfrak{z}|=\mathfrak{z}\bar{\mathfrak{z}}

x = rcosθ

y = rsinθ

r = x2 + y2


\sinh (x) = \frac{e^x -e^{-x}}{2}


\cosh(x) = \frac{e^x + e^{-x}}{2}


\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan ^{-1} (\frac{u}{a})


\int \frac{du}{\sqrt{a^2-u^2}} = \sin ^{-1} (\frac{u}{a})


\int \frac{du}{\sqrt{a^2+u^2}} = \sinh ^{-1} (\frac{u}{a})


V = \int _a ^b 2 \pi x f(x) dx

Prove:

 \lim _{k \to \infty} A \bigg( 1 + \frac{r}{k}\bigg)^{kt}= Ae^{rt}

This holds if:

 \lim _{k \to \infty} \bigg( 1 + \frac{r}{k} \bigg) ^k = e^r

So:


\bigg( 1 + \frac{r}{k} \bigg) ^k = e^{\ln \big( 1 + \frac{r}{k} \big) ^k}

Which is equivalent to:


e^{k \ln \big( 1 + \frac{r}{k} \big)}

Then our supposition holds true if:


\lim_{k \to \infty} k \ln \bigg(1 + \frac{r}{k} \bigg) = r

Now we substitute a new variable  n = \frac{1}{k} into the equation. This gives:


\lim_{n \to 0} \frac{\ln (1 + rn)}{n}

Then by L'Hôpital's rule the above expression is equivalent to:


\lim_{n \to 0} \frac{ \frac{r}{1 + rn}}{1} = lim_{n \to 0} \frac{r}{1+rn}=\frac{r}{1}=r

Therefore:



\lim _{k \to \infty} \bigg( 1 + \frac{r}{k} \bigg) ^k = e^r





\lim_{x \to 0} \frac{\sin x}{x} = 1

Proofs:

By L'Hôpital's Rule:


\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1}= \cos 0 = 1

By Sandwich Theorem:

sinx < x


\frac{\sin x}{x} < 1


\cos x < \frac{\sin x}{x}


\lim_{x \to 0} \cos x =1


\lim_{x \to 0} 1 = 1

Therefore:


\lim_{x \to 0} \frac{\sin x}{x} = 1



\int \frac{du}{\sqrt{a^2-u^2}} = \sinh ^{-1} \frac{u}{a}

cos2x + sin2x = 1

sec2x = 1 + tan2x

csc2x = cot2x + 1


\operatorname{Fish} (x) = \iint _2 ^43 \ln \sinh x + 7x^4 -exi