User:!jim/Sandbox

From Wikipedia, the free encyclopedia

A_0=\alpha-\frac{1}{\pi}\int_0^\pi\frac{d\overline{Z}}{dx}(\theta)d\theta

A_n=\frac{2}{\pi}\int_0^\pi\frac{d\overline{Z}}{dx}(\theta)\cos(n\theta) d\theta


[edit] Load at point x


L(x)=\int_0^x w(x^*) dx^*=\int_0^x c\sqrt{1-\frac{4x^{*2}}{b^2}} dx^*=1/2\,cx\sqrt {1-4\,{\frac {{x}^{2}}{{b}^{2}}}}+1/4\,c\arctan \left( 2
\,\sqrt {{b}^{-2}}x{\frac {1}{\sqrt {1-4\,{\frac {{x}^{2}}{{b}^{2}}}}}
} \right) {\frac {1}{\sqrt {{b}^{-2}}}}

where:

  • L(x) is the total force at point x
  • c=\frac{2\,\mathrm{weight}\, n_{max}}{a\pi}
  • b is the span
  • x * is the integration variable (kinda like how sometimes you integrate in τ from 0 to t)


\mathrm{centroid}=\frac{\int_0^x x^*c\sqrt{1-\frac{4x^{*2}}{b^2}} dx^*}{\int_0^x c\sqrt{1-\frac{4x^{*2}}{b^2}} dx^*}=1/12\, \left( 2\,x-b \right)  \left( 2\,x+b \right) c\sqrt {-{\frac {-
{b}^{2}+4\,{x}^{2}}{{b}^{2}}}} \left( 1/2\,cx\sqrt {1-4\,{\frac {{x}^{
2}}{{b}^{2}}}}+1/4\,c\arctan \left( 2\,\sqrt {{b}^{-2}}x{\frac {1}{
\sqrt {1-4\,{\frac {{x}^{2}}{{b}^{2}}}}}} \right) {\frac {1}{\sqrt {{b
}^{-2}}}} \right) ^{-1}